Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncmp Structured version   Visualization version   GIF version

Theorem lplncmp 39527
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
lplncmp.l = (le‘𝐾)
lplncmp.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplncmp ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lplncmp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋𝑃)
2 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
3 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 lplncmp.p . . . . . . 7 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 39499 . . . . . 6 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
653ad2ant2 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2735 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2735 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
93, 7, 8, 4islpln4 39496 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋𝑃 ↔ ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
111, 10mpbid 232 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)
12 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 39330 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑃)
183, 4lplnbase 39499 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (LLines‘𝐾))
213, 8llnbase 39474 . . . . . . . 8 (𝑧 ∈ (LLines‘𝐾) → 𝑧 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (Base‘𝐾))
23 simpr2 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋)
24 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 lplncmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 39242 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 𝑋)
2724, 22, 16, 23, 26syl31anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑋)
283, 25postr 18330 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
2915, 22, 16, 19, 28syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
3027, 12, 29mp2and 699 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑌)
3125, 7, 8, 4llncvrlpln2 39522 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑧 ∈ (LLines‘𝐾) ∧ 𝑌𝑃) ∧ 𝑧 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1375 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 39247 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1390 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 232 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1355 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑧 ∈ (LLines‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3139 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 18328 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 𝑋)
41 breq2 5123 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 245 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  cfv 6530  Basecbs 17226  lecple 17276  Posetcpo 18317  ccvr 39226  HLchlt 39314  LLinesclln 39456  LPlanesclpl 39457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-llines 39463  df-lplanes 39464
This theorem is referenced by:  lplnexllnN  39529  lplnnlt  39530  2llnjaN  39531  dalem-cly  39636  dalem44  39681
  Copyright terms: Public domain W3C validator