Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncmp Structured version   Visualization version   GIF version

Theorem lplncmp 36858
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
lplncmp.l = (le‘𝐾)
lplncmp.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplncmp ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lplncmp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋𝑃)
2 simp1 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
3 eqid 2798 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 lplncmp.p . . . . . . 7 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 36830 . . . . . 6 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
653ad2ant2 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2798 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2798 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
93, 7, 8, 4islpln4 36827 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 587 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋𝑃 ↔ ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
111, 10mpbid 235 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)
12 simpr3 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 36662 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1130 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ Poset)
1514adantr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1190 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑃)
183, 4lplnbase 36830 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (LLines‘𝐾))
213, 8llnbase 36805 . . . . . . . 8 (𝑧 ∈ (LLines‘𝐾) → 𝑧 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (Base‘𝐾))
23 simpr2 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋)
24 simpl1 1188 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 lplncmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 36574 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 𝑋)
2724, 22, 16, 23, 26syl31anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑋)
283, 25postr 17555 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
2915, 22, 16, 19, 28syl13anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
3027, 12, 29mp2and 698 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑌)
3125, 7, 8, 4llncvrlpln2 36853 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑧 ∈ (LLines‘𝐾) ∧ 𝑌𝑃) ∧ 𝑧 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 36579 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1385 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 235 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1351 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑧 ∈ (LLines‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3242 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 17553 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 587 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 𝑋)
41 breq2 5034 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 248 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 215 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564  Posetcpo 17542  ccvr 36558  HLchlt 36646  LLinesclln 36787  LPlanesclpl 36788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795
This theorem is referenced by:  lplnexllnN  36860  lplnnlt  36861  2llnjaN  36862  dalem-cly  36967  dalem44  37012
  Copyright terms: Public domain W3C validator