Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncmp Structured version   Visualization version   GIF version

Theorem lplncmp 38025
Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
lplncmp.l = (le‘𝐾)
lplncmp.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplncmp ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem lplncmp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋𝑃)
2 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
3 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 lplncmp.p . . . . . . 7 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 37997 . . . . . 6 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
653ad2ant2 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2736 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
8 eqid 2736 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
93, 7, 8, 4islpln4 37994 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
102, 6, 9syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋𝑃 ↔ ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋))
111, 10mpbid 231 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋)
12 simpr3 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 𝑌)
13 hlpos 37828 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ Poset)
1514adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ Poset)
166adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
17 simpl3 1193 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌𝑃)
183, 4lplnbase 37997 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
20 simpr1 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (LLines‘𝐾))
213, 8llnbase 37972 . . . . . . . 8 (𝑧 ∈ (LLines‘𝐾) → 𝑧 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 ∈ (Base‘𝐾))
23 simpr2 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑋)
24 simpl1 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
25 lplncmp.l . . . . . . . . . . 11 = (le‘𝐾)
263, 25, 7cvrle 37740 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑧( ⋖ ‘𝐾)𝑋) → 𝑧 𝑋)
2724, 22, 16, 23, 26syl31anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑋)
283, 25postr 18209 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
2915, 22, 16, 19, 28syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → ((𝑧 𝑋𝑋 𝑌) → 𝑧 𝑌))
3027, 12, 29mp2and 697 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧 𝑌)
3125, 7, 8, 4llncvrlpln2 38020 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑧 ∈ (LLines‘𝐾) ∧ 𝑌𝑃) ∧ 𝑧 𝑌) → 𝑧( ⋖ ‘𝐾)𝑌)
3224, 20, 17, 30, 31syl31anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑧( ⋖ ‘𝐾)𝑌)
333, 25, 7cvrcmp 37745 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑧( ⋖ ‘𝐾)𝑋𝑧( ⋖ ‘𝐾)𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3415, 16, 19, 22, 23, 32, 33syl132anc 1388 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
3512, 34mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑧 ∈ (LLines‘𝐾) ∧ 𝑧( ⋖ ‘𝐾)𝑋𝑋 𝑌)) → 𝑋 = 𝑌)
36353exp2 1354 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑧 ∈ (LLines‘𝐾) → (𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌))))
3736rexlimdv 3150 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (∃𝑧 ∈ (LLines‘𝐾)𝑧( ⋖ ‘𝐾)𝑋 → (𝑋 𝑌𝑋 = 𝑌)))
3811, 37mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
393, 25posref 18207 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋 𝑋)
4014, 6, 39syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 𝑋)
41 breq2 5109 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
4240, 41syl5ibcom 244 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 = 𝑌𝑋 𝑌))
4338, 42impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  Basecbs 17083  lecple 17140  Posetcpo 18196  ccvr 37724  HLchlt 37812  LLinesclln 37954  LPlanesclpl 37955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962
This theorem is referenced by:  lplnexllnN  38027  lplnnlt  38028  2llnjaN  38029  dalem-cly  38134  dalem44  38179
  Copyright terms: Public domain W3C validator