MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pos Structured version   Visualization version   GIF version

Theorem 0pos 17558
Description: Technical lemma to simplify the statement of ipopos 17764. The empty set is (rather pathologically) a poset under our definitions, since it has an empty base set (str0 16529) and any relation partially orders an empty set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
0pos ∅ ∈ Poset

Proof of Theorem 0pos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5204 . 2 ∅ ∈ V
2 ral0 4456 . 2 𝑎 ∈ ∅ ∀𝑏 ∈ ∅ ∀𝑐 ∈ ∅ (𝑎𝑎 ∧ ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏) ∧ ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))
3 base0 16530 . . 3 ∅ = (Base‘∅)
4 df-ple 16579 . . . 4 le = Slot 10
54str0 16529 . . 3 ∅ = (le‘∅)
63, 5ispos 17551 . 2 (∅ ∈ Poset ↔ (∅ ∈ V ∧ ∀𝑎 ∈ ∅ ∀𝑏 ∈ ∅ ∀𝑐 ∈ ∅ (𝑎𝑎 ∧ ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏) ∧ ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))))
71, 2, 6mpbir2an 709 1 ∅ ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2110  wral 3138  Vcvv 3495  c0 4291   class class class wbr 5059  0cc0 10531  1c1 10532  cdc 12092  lecple 16566  Posetcpo 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-slot 16481  df-base 16483  df-ple 16579  df-poset 17550
This theorem is referenced by:  ipopos  17764
  Copyright terms: Public domain W3C validator