![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pos | Structured version Visualization version GIF version |
Description: Technical lemma to simplify the statement of ipopos 18495. The empty set is (rather pathologically) a poset under our definitions, since it has an empty base set (str0 17128) and any relation partially orders an empty set. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof shortened by AV, 13-Oct-2024.) |
Ref | Expression |
---|---|
0pos | β’ β β Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5308 | . 2 β’ β β V | |
2 | ral0 4513 | . 2 β’ βπ β β βπ β β βπ β β (πβ π β§ ((πβ π β§ πβ π) β π = π) β§ ((πβ π β§ πβ π) β πβ π)) | |
3 | base0 17155 | . . 3 β’ β = (Baseββ ) | |
4 | pleid 17318 | . . . 4 β’ le = Slot (leβndx) | |
5 | 4 | str0 17128 | . . 3 β’ β = (leββ ) |
6 | 3, 5 | ispos 18273 | . 2 β’ (β β Poset β (β β V β§ βπ β β βπ β β βπ β β (πβ π β§ ((πβ π β§ πβ π) β π = π) β§ ((πβ π β§ πβ π) β πβ π)))) |
7 | 1, 2, 6 | mpbir2an 707 | 1 β’ β β Poset |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 β wcel 2104 βwral 3059 Vcvv 3472 β c0 4323 class class class wbr 5149 βcfv 6544 ndxcnx 17132 lecple 17210 Posetcpo 18266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-ltxr 11259 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-dec 12684 df-slot 17121 df-ndx 17133 df-base 17151 df-ple 17223 df-poset 18272 |
This theorem is referenced by: ipopos 18495 ipolub00 47707 |
Copyright terms: Public domain | W3C validator |