Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncvrlpln Structured version   Visualization version   GIF version

Theorem llncvrlpln 35514
Description: An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llncvrlpln.b 𝐵 = (Base‘𝐾)
llncvrlpln.c 𝐶 = ( ⋖ ‘𝐾)
llncvrlpln.n 𝑁 = (LLines‘𝐾)
llncvrlpln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llncvrlpln (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))

Proof of Theorem llncvrlpln
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1269 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝐾 ∈ HL)
2 simpll3 1273 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑌𝐵)
3 simpr 477 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑋𝑁)
4 simplr 785 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑋𝐶𝑌)
5 llncvrlpln.b . . . 4 𝐵 = (Base‘𝐾)
6 llncvrlpln.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 llncvrlpln.n . . . 4 𝑁 = (LLines‘𝐾)
8 llncvrlpln.p . . . 4 𝑃 = (LPlanes‘𝐾)
95, 6, 7, 8lplni 35488 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)
101, 2, 3, 4, 9syl31anc 1492 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑌𝑃)
11 simpll1 1269 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝐾 ∈ HL)
12 simpll2 1271 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝐵)
13 eqid 2765 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
1413, 8lplnneat 35501 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌 ∈ (Atoms‘𝐾))
1511, 14sylancom 582 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑌 ∈ (Atoms‘𝐾))
16 simplr 785 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝐶𝑌)
17 breq1 4812 . . . . . . . 8 (𝑋 = (0.‘𝐾) → (𝑋𝐶𝑌 ↔ (0.‘𝐾)𝐶𝑌))
1816, 17syl5ibcom 236 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 = (0.‘𝐾) → (0.‘𝐾)𝐶𝑌))
19 simpll3 1273 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑌𝐵)
20 eqid 2765 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
215, 20, 6, 13isat2 35243 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
2211, 19, 21syl2anc 579 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
2318, 22sylibrd 250 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 = (0.‘𝐾) → 𝑌 ∈ (Atoms‘𝐾)))
2423necon3bd 2951 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (¬ 𝑌 ∈ (Atoms‘𝐾) → 𝑋 ≠ (0.‘𝐾)))
2515, 24mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋 ≠ (0.‘𝐾))
267, 8lplnnelln 35502 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
2711, 26sylancom 582 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
285, 6, 13, 7atcvrlln 35476 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ (Atoms‘𝐾) ↔ 𝑌𝑁))
2928adantr 472 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 ∈ (Atoms‘𝐾) ↔ 𝑌𝑁))
3027, 29mtbird 316 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑋 ∈ (Atoms‘𝐾))
31 eqid 2765 . . . . 5 (le‘𝐾) = (le‘𝐾)
325, 31, 20, 13, 7llnle 35474 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋 ≠ (0.‘𝐾) ∧ ¬ 𝑋 ∈ (Atoms‘𝐾))) → ∃𝑧𝑁 𝑧(le‘𝐾)𝑋)
3311, 12, 25, 30, 32syl22anc 867 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ∃𝑧𝑁 𝑧(le‘𝐾)𝑋)
34 simpr3 1252 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑋)
35 simpll1 1269 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
36 hlop 35318 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
3735, 36syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ OP)
38 simpr2 1250 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝑁)
395, 7llnbase 35465 . . . . . . . . . 10 (𝑧𝑁𝑧𝐵)
4038, 39syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝐵)
41 simpll2 1271 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝐵)
42 simpll3 1273 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑌𝐵)
43 simpr1 1248 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑌𝑃)
445, 31, 6cvrle 35234 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(le‘𝐾)𝑌)
4544adantr 472 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋(le‘𝐾)𝑌)
46 hlpos 35322 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4735, 46syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
485, 31postr 17219 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑧𝐵𝑋𝐵𝑌𝐵)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
4947, 40, 41, 42, 48syl13anc 1491 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
5034, 45, 49mp2and 690 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑌)
5131, 6, 7, 8llncvrlpln2 35513 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑌𝑃) ∧ 𝑧(le‘𝐾)𝑌) → 𝑧𝐶𝑌)
5235, 38, 43, 50, 51syl31anc 1492 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝐶𝑌)
53 simplr 785 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝐶𝑌)
545, 31, 6cvrcmp2 35240 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑧𝐵𝑋𝐵𝑌𝐵) ∧ (𝑧𝐶𝑌𝑋𝐶𝑌)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
5537, 40, 41, 42, 52, 53, 54syl132anc 1507 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
5634, 55mpbid 223 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧 = 𝑋)
5756, 38eqeltrrd 2845 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝑁)
58573exp2 1463 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑌𝑃 → (𝑧𝑁 → (𝑧(le‘𝐾)𝑋𝑋𝑁))))
5958imp 395 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑧𝑁 → (𝑧(le‘𝐾)𝑋𝑋𝑁)))
6059rexlimdv 3177 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (∃𝑧𝑁 𝑧(le‘𝐾)𝑋𝑋𝑁))
6133, 60mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝑁)
6210, 61impbida 835 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4809  cfv 6068  Basecbs 16130  lecple 16221  Posetcpo 17206  0.cp0 17303  OPcops 35128  ccvr 35218  Atomscatm 35219  HLchlt 35306  LLinesclln 35447  LPlanesclpl 35448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-proset 17194  df-poset 17212  df-plt 17224  df-lub 17240  df-glb 17241  df-join 17242  df-meet 17243  df-p0 17305  df-lat 17312  df-clat 17374  df-oposet 35132  df-ol 35134  df-oml 35135  df-covers 35222  df-ats 35223  df-atl 35254  df-cvlat 35278  df-hlat 35307  df-llines 35454  df-lplanes 35455
This theorem is referenced by:  2lplnmN  35515  2llnmj  35516  lplncvrlvol  35572  2lplnm2N  35577  2lplnmj  35578
  Copyright terms: Public domain W3C validator