Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncvrlpln Structured version   Visualization version   GIF version

Theorem llncvrlpln 39515
Description: An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llncvrlpln.b 𝐵 = (Base‘𝐾)
llncvrlpln.c 𝐶 = ( ⋖ ‘𝐾)
llncvrlpln.n 𝑁 = (LLines‘𝐾)
llncvrlpln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llncvrlpln (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))

Proof of Theorem llncvrlpln
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1212 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝐾 ∈ HL)
2 simpll3 1214 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑌𝐵)
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑋𝑁)
4 simplr 768 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑋𝐶𝑌)
5 llncvrlpln.b . . . 4 𝐵 = (Base‘𝐾)
6 llncvrlpln.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 llncvrlpln.n . . . 4 𝑁 = (LLines‘𝐾)
8 llncvrlpln.p . . . 4 𝑃 = (LPlanes‘𝐾)
95, 6, 7, 8lplni 39489 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)
101, 2, 3, 4, 9syl31anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑌𝑃)
11 simpll1 1212 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝐾 ∈ HL)
12 simpll2 1213 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝐵)
13 eqid 2740 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
1413, 8lplnneat 39502 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌 ∈ (Atoms‘𝐾))
1511, 14sylancom 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑌 ∈ (Atoms‘𝐾))
16 simplr 768 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝐶𝑌)
17 breq1 5169 . . . . . . . 8 (𝑋 = (0.‘𝐾) → (𝑋𝐶𝑌 ↔ (0.‘𝐾)𝐶𝑌))
1816, 17syl5ibcom 245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 = (0.‘𝐾) → (0.‘𝐾)𝐶𝑌))
19 simpll3 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑌𝐵)
20 eqid 2740 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
215, 20, 6, 13isat2 39243 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
2211, 19, 21syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
2318, 22sylibrd 259 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 = (0.‘𝐾) → 𝑌 ∈ (Atoms‘𝐾)))
2423necon3bd 2960 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (¬ 𝑌 ∈ (Atoms‘𝐾) → 𝑋 ≠ (0.‘𝐾)))
2515, 24mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋 ≠ (0.‘𝐾))
267, 8lplnnelln 39503 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
2711, 26sylancom 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
285, 6, 13, 7atcvrlln 39477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ (Atoms‘𝐾) ↔ 𝑌𝑁))
2928adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 ∈ (Atoms‘𝐾) ↔ 𝑌𝑁))
3027, 29mtbird 325 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑋 ∈ (Atoms‘𝐾))
31 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
325, 31, 20, 13, 7llnle 39475 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋 ≠ (0.‘𝐾) ∧ ¬ 𝑋 ∈ (Atoms‘𝐾))) → ∃𝑧𝑁 𝑧(le‘𝐾)𝑋)
3311, 12, 25, 30, 32syl22anc 838 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ∃𝑧𝑁 𝑧(le‘𝐾)𝑋)
34 simpr3 1196 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑋)
35 simpll1 1212 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
36 hlop 39318 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
3735, 36syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ OP)
38 simpr2 1195 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝑁)
395, 7llnbase 39466 . . . . . . . . . 10 (𝑧𝑁𝑧𝐵)
4038, 39syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝐵)
41 simpll2 1213 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝐵)
42 simpll3 1214 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑌𝐵)
43 simpr1 1194 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑌𝑃)
445, 31, 6cvrle 39234 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(le‘𝐾)𝑌)
4544adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋(le‘𝐾)𝑌)
46 hlpos 39322 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4735, 46syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
485, 31postr 18390 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑧𝐵𝑋𝐵𝑌𝐵)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
4947, 40, 41, 42, 48syl13anc 1372 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
5034, 45, 49mp2and 698 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑌)
5131, 6, 7, 8llncvrlpln2 39514 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑌𝑃) ∧ 𝑧(le‘𝐾)𝑌) → 𝑧𝐶𝑌)
5235, 38, 43, 50, 51syl31anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝐶𝑌)
53 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝐶𝑌)
545, 31, 6cvrcmp2 39240 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑧𝐵𝑋𝐵𝑌𝐵) ∧ (𝑧𝐶𝑌𝑋𝐶𝑌)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
5537, 40, 41, 42, 52, 53, 54syl132anc 1388 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
5634, 55mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧 = 𝑋)
5756, 38eqeltrrd 2845 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝑁)
58573exp2 1354 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑌𝑃 → (𝑧𝑁 → (𝑧(le‘𝐾)𝑋𝑋𝑁))))
5958imp 406 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑧𝑁 → (𝑧(le‘𝐾)𝑋𝑋𝑁)))
6059rexlimdv 3159 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (∃𝑧𝑁 𝑧(le‘𝐾)𝑋𝑋𝑁))
6133, 60mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝑁)
6210, 61impbida 800 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  0.cp0 18493  OPcops 39128  ccvr 39218  Atomscatm 39219  HLchlt 39306  LLinesclln 39448  LPlanesclpl 39449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456
This theorem is referenced by:  2lplnmN  39516  2llnmj  39517  lplncvrlvol  39573  2lplnm2N  39578  2lplnmj  39579
  Copyright terms: Public domain W3C validator