Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncvrlpln Structured version   Visualization version   GIF version

Theorem llncvrlpln 36696
Description: An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llncvrlpln.b 𝐵 = (Base‘𝐾)
llncvrlpln.c 𝐶 = ( ⋖ ‘𝐾)
llncvrlpln.n 𝑁 = (LLines‘𝐾)
llncvrlpln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llncvrlpln (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))

Proof of Theorem llncvrlpln
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝐾 ∈ HL)
2 simpll3 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑌𝐵)
3 simpr 487 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑋𝑁)
4 simplr 767 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑋𝐶𝑌)
5 llncvrlpln.b . . . 4 𝐵 = (Base‘𝐾)
6 llncvrlpln.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 llncvrlpln.n . . . 4 𝑁 = (LLines‘𝐾)
8 llncvrlpln.p . . . 4 𝑃 = (LPlanes‘𝐾)
95, 6, 7, 8lplni 36670 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)
101, 2, 3, 4, 9syl31anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑌𝑃)
11 simpll1 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝐾 ∈ HL)
12 simpll2 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝐵)
13 eqid 2823 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
1413, 8lplnneat 36683 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌 ∈ (Atoms‘𝐾))
1511, 14sylancom 590 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑌 ∈ (Atoms‘𝐾))
16 simplr 767 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝐶𝑌)
17 breq1 5071 . . . . . . . 8 (𝑋 = (0.‘𝐾) → (𝑋𝐶𝑌 ↔ (0.‘𝐾)𝐶𝑌))
1816, 17syl5ibcom 247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 = (0.‘𝐾) → (0.‘𝐾)𝐶𝑌))
19 simpll3 1210 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑌𝐵)
20 eqid 2823 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
215, 20, 6, 13isat2 36425 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
2211, 19, 21syl2anc 586 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
2318, 22sylibrd 261 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 = (0.‘𝐾) → 𝑌 ∈ (Atoms‘𝐾)))
2423necon3bd 3032 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (¬ 𝑌 ∈ (Atoms‘𝐾) → 𝑋 ≠ (0.‘𝐾)))
2515, 24mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋 ≠ (0.‘𝐾))
267, 8lplnnelln 36684 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
2711, 26sylancom 590 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
285, 6, 13, 7atcvrlln 36658 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ (Atoms‘𝐾) ↔ 𝑌𝑁))
2928adantr 483 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 ∈ (Atoms‘𝐾) ↔ 𝑌𝑁))
3027, 29mtbird 327 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑋 ∈ (Atoms‘𝐾))
31 eqid 2823 . . . . 5 (le‘𝐾) = (le‘𝐾)
325, 31, 20, 13, 7llnle 36656 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋 ≠ (0.‘𝐾) ∧ ¬ 𝑋 ∈ (Atoms‘𝐾))) → ∃𝑧𝑁 𝑧(le‘𝐾)𝑋)
3311, 12, 25, 30, 32syl22anc 836 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ∃𝑧𝑁 𝑧(le‘𝐾)𝑋)
34 simpr3 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑋)
35 simpll1 1208 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
36 hlop 36500 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
3735, 36syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ OP)
38 simpr2 1191 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝑁)
395, 7llnbase 36647 . . . . . . . . . 10 (𝑧𝑁𝑧𝐵)
4038, 39syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝐵)
41 simpll2 1209 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝐵)
42 simpll3 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑌𝐵)
43 simpr1 1190 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑌𝑃)
445, 31, 6cvrle 36416 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(le‘𝐾)𝑌)
4544adantr 483 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋(le‘𝐾)𝑌)
46 hlpos 36504 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4735, 46syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
485, 31postr 17565 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑧𝐵𝑋𝐵𝑌𝐵)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
4947, 40, 41, 42, 48syl13anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
5034, 45, 49mp2and 697 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑌)
5131, 6, 7, 8llncvrlpln2 36695 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑌𝑃) ∧ 𝑧(le‘𝐾)𝑌) → 𝑧𝐶𝑌)
5235, 38, 43, 50, 51syl31anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝐶𝑌)
53 simplr 767 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝐶𝑌)
545, 31, 6cvrcmp2 36422 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑧𝐵𝑋𝐵𝑌𝐵) ∧ (𝑧𝐶𝑌𝑋𝐶𝑌)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
5537, 40, 41, 42, 52, 53, 54syl132anc 1384 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
5634, 55mpbid 234 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧 = 𝑋)
5756, 38eqeltrrd 2916 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝑁)
58573exp2 1350 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑌𝑃 → (𝑧𝑁 → (𝑧(le‘𝐾)𝑋𝑋𝑁))))
5958imp 409 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑧𝑁 → (𝑧(le‘𝐾)𝑋𝑋𝑁)))
6059rexlimdv 3285 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (∃𝑧𝑁 𝑧(le‘𝐾)𝑋𝑋𝑁))
6133, 60mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝑁)
6210, 61impbida 799 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141   class class class wbr 5068  cfv 6357  Basecbs 16485  lecple 16574  Posetcpo 17552  0.cp0 17649  OPcops 36310  ccvr 36400  Atomscatm 36401  HLchlt 36488  LLinesclln 36629  LPlanesclpl 36630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637
This theorem is referenced by:  2lplnmN  36697  2llnmj  36698  lplncvrlvol  36754  2lplnm2N  36759  2lplnmj  36760
  Copyright terms: Public domain W3C validator