Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llncvrlpln Structured version   Visualization version   GIF version

Theorem llncvrlpln 37819
Description: An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llncvrlpln.b 𝐵 = (Base‘𝐾)
llncvrlpln.c 𝐶 = ( ⋖ ‘𝐾)
llncvrlpln.n 𝑁 = (LLines‘𝐾)
llncvrlpln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llncvrlpln (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))

Proof of Theorem llncvrlpln
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll1 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝐾 ∈ HL)
2 simpll3 1213 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑌𝐵)
3 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑋𝑁)
4 simplr 766 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑋𝐶𝑌)
5 llncvrlpln.b . . . 4 𝐵 = (Base‘𝐾)
6 llncvrlpln.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 llncvrlpln.n . . . 4 𝑁 = (LLines‘𝐾)
8 llncvrlpln.p . . . 4 𝑃 = (LPlanes‘𝐾)
95, 6, 7, 8lplni 37793 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)
101, 2, 3, 4, 9syl31anc 1372 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝑁) → 𝑌𝑃)
11 simpll1 1211 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝐾 ∈ HL)
12 simpll2 1212 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝐵)
13 eqid 2736 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
1413, 8lplnneat 37806 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌 ∈ (Atoms‘𝐾))
1511, 14sylancom 588 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑌 ∈ (Atoms‘𝐾))
16 simplr 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝐶𝑌)
17 breq1 5092 . . . . . . . 8 (𝑋 = (0.‘𝐾) → (𝑋𝐶𝑌 ↔ (0.‘𝐾)𝐶𝑌))
1816, 17syl5ibcom 244 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 = (0.‘𝐾) → (0.‘𝐾)𝐶𝑌))
19 simpll3 1213 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑌𝐵)
20 eqid 2736 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
215, 20, 6, 13isat2 37547 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
2211, 19, 21syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑌 ∈ (Atoms‘𝐾) ↔ (0.‘𝐾)𝐶𝑌))
2318, 22sylibrd 258 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 = (0.‘𝐾) → 𝑌 ∈ (Atoms‘𝐾)))
2423necon3bd 2954 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (¬ 𝑌 ∈ (Atoms‘𝐾) → 𝑋 ≠ (0.‘𝐾)))
2515, 24mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋 ≠ (0.‘𝐾))
267, 8lplnnelln 37807 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
2711, 26sylancom 588 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑌𝑁)
285, 6, 13, 7atcvrlln 37781 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ (Atoms‘𝐾) ↔ 𝑌𝑁))
2928adantr 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑋 ∈ (Atoms‘𝐾) ↔ 𝑌𝑁))
3027, 29mtbird 324 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ¬ 𝑋 ∈ (Atoms‘𝐾))
31 eqid 2736 . . . . 5 (le‘𝐾) = (le‘𝐾)
325, 31, 20, 13, 7llnle 37779 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋 ≠ (0.‘𝐾) ∧ ¬ 𝑋 ∈ (Atoms‘𝐾))) → ∃𝑧𝑁 𝑧(le‘𝐾)𝑋)
3311, 12, 25, 30, 32syl22anc 836 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → ∃𝑧𝑁 𝑧(le‘𝐾)𝑋)
34 simpr3 1195 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑋)
35 simpll1 1211 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ HL)
36 hlop 37622 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
3735, 36syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ OP)
38 simpr2 1194 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝑁)
395, 7llnbase 37770 . . . . . . . . . 10 (𝑧𝑁𝑧𝐵)
4038, 39syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝐵)
41 simpll2 1212 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝐵)
42 simpll3 1213 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑌𝐵)
43 simpr1 1193 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑌𝑃)
445, 31, 6cvrle 37538 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(le‘𝐾)𝑌)
4544adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋(le‘𝐾)𝑌)
46 hlpos 37626 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4735, 46syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝐾 ∈ Poset)
485, 31postr 18127 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑧𝐵𝑋𝐵𝑌𝐵)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
4947, 40, 41, 42, 48syl13anc 1371 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → ((𝑧(le‘𝐾)𝑋𝑋(le‘𝐾)𝑌) → 𝑧(le‘𝐾)𝑌))
5034, 45, 49mp2and 696 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧(le‘𝐾)𝑌)
5131, 6, 7, 8llncvrlpln2 37818 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑌𝑃) ∧ 𝑧(le‘𝐾)𝑌) → 𝑧𝐶𝑌)
5235, 38, 43, 50, 51syl31anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧𝐶𝑌)
53 simplr 766 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝐶𝑌)
545, 31, 6cvrcmp2 37544 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑧𝐵𝑋𝐵𝑌𝐵) ∧ (𝑧𝐶𝑌𝑋𝐶𝑌)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
5537, 40, 41, 42, 52, 53, 54syl132anc 1387 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → (𝑧(le‘𝐾)𝑋𝑧 = 𝑋))
5634, 55mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑧 = 𝑋)
5756, 38eqeltrrd 2838 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑌𝑃𝑧𝑁𝑧(le‘𝐾)𝑋)) → 𝑋𝑁)
58573exp2 1353 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑌𝑃 → (𝑧𝑁 → (𝑧(le‘𝐾)𝑋𝑋𝑁))))
5958imp 407 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (𝑧𝑁 → (𝑧(le‘𝐾)𝑋𝑋𝑁)))
6059rexlimdv 3146 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → (∃𝑧𝑁 𝑧(le‘𝐾)𝑋𝑋𝑁))
6133, 60mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑃) → 𝑋𝑁)
6210, 61impbida 798 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wrex 3070   class class class wbr 5089  cfv 6473  Basecbs 17001  lecple 17058  Posetcpo 18114  0.cp0 18230  OPcops 37432  ccvr 37522  Atomscatm 37523  HLchlt 37610  LLinesclln 37752  LPlanesclpl 37753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-proset 18102  df-poset 18120  df-plt 18137  df-lub 18153  df-glb 18154  df-join 18155  df-meet 18156  df-p0 18232  df-lat 18239  df-clat 18306  df-oposet 37436  df-ol 37438  df-oml 37439  df-covers 37526  df-ats 37527  df-atl 37558  df-cvlat 37582  df-hlat 37611  df-llines 37759  df-lplanes 37760
This theorem is referenced by:  2lplnmN  37820  2llnmj  37821  lplncvrlvol  37877  2lplnm2N  37882  2lplnmj  37883
  Copyright terms: Public domain W3C validator