MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetle Structured version   Visualization version   GIF version

Theorem meetle 18359
Description: A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetle.b 𝐵 = (Base‘𝐾)
meetle.l = (le‘𝐾)
meetle.m = (meet‘𝐾)
meetle.k (𝜑𝐾 ∈ Poset)
meetle.x (𝜑𝑋𝐵)
meetle.y (𝜑𝑌𝐵)
meetle.z (𝜑𝑍𝐵)
meetle.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meetle (𝜑 → ((𝑍 𝑋𝑍 𝑌) ↔ 𝑍 (𝑋 𝑌)))

Proof of Theorem meetle
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq1 5110 . . . . 5 (𝑧 = 𝑍 → (𝑧 𝑋𝑍 𝑋))
2 breq1 5110 . . . . 5 (𝑧 = 𝑍 → (𝑧 𝑌𝑍 𝑌))
31, 2anbi12d 632 . . . 4 (𝑧 = 𝑍 → ((𝑧 𝑋𝑧 𝑌) ↔ (𝑍 𝑋𝑍 𝑌)))
4 breq1 5110 . . . 4 (𝑧 = 𝑍 → (𝑧 (𝑋 𝑌) ↔ 𝑍 (𝑋 𝑌)))
53, 4imbi12d 344 . . 3 (𝑧 = 𝑍 → (((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌)) ↔ ((𝑍 𝑋𝑍 𝑌) → 𝑍 (𝑋 𝑌))))
6 meetle.b . . . . 5 𝐵 = (Base‘𝐾)
7 meetle.l . . . . 5 = (le‘𝐾)
8 meetle.m . . . . 5 = (meet‘𝐾)
9 meetle.k . . . . 5 (𝜑𝐾 ∈ Poset)
10 meetle.x . . . . 5 (𝜑𝑋𝐵)
11 meetle.y . . . . 5 (𝜑𝑌𝐵)
12 meetle.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
136, 7, 8, 9, 10, 11, 12meetlem 18356 . . . 4 (𝜑 → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
1413simprd 495 . . 3 (𝜑 → ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌)))
15 meetle.z . . 3 (𝜑𝑍𝐵)
165, 14, 15rspcdva 3589 . 2 (𝜑 → ((𝑍 𝑋𝑍 𝑌) → 𝑍 (𝑋 𝑌)))
176, 7, 8, 9, 10, 11, 12lemeet1 18357 . . . 4 (𝜑 → (𝑋 𝑌) 𝑋)
186, 8, 9, 10, 11, 12meetcl 18351 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
196, 7postr 18281 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑍𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵)) → ((𝑍 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑋) → 𝑍 𝑋))
209, 15, 18, 10, 19syl13anc 1374 . . . 4 (𝜑 → ((𝑍 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑋) → 𝑍 𝑋))
2117, 20mpan2d 694 . . 3 (𝜑 → (𝑍 (𝑋 𝑌) → 𝑍 𝑋))
226, 7, 8, 9, 10, 11, 12lemeet2 18358 . . . 4 (𝜑 → (𝑋 𝑌) 𝑌)
236, 7postr 18281 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑍𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑍 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑌) → 𝑍 𝑌))
249, 15, 18, 11, 23syl13anc 1374 . . . 4 (𝜑 → ((𝑍 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑌) → 𝑍 𝑌))
2522, 24mpan2d 694 . . 3 (𝜑 → (𝑍 (𝑋 𝑌) → 𝑍 𝑌))
2621, 25jcad 512 . 2 (𝜑 → (𝑍 (𝑋 𝑌) → (𝑍 𝑋𝑍 𝑌)))
2716, 26impbid 212 1 (𝜑 → ((𝑍 𝑋𝑍 𝑌) ↔ 𝑍 (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4595   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  Posetcpo 18268  meetcmee 18273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-poset 18274  df-glb 18306  df-meet 18308
This theorem is referenced by:  latlem12  18425
  Copyright terms: Public domain W3C validator