| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetle | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetle.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetle.l | ⊢ ≤ = (le‘𝐾) |
| meetle.m | ⊢ ∧ = (meet‘𝐾) |
| meetle.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| meetle.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| meetle.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| meetle.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| meetle.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| Ref | Expression |
|---|---|
| meetle | ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5128 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ 𝑋 ↔ 𝑍 ≤ 𝑋)) | |
| 2 | breq1 5128 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ 𝑌 ↔ 𝑍 ≤ 𝑌)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) ↔ (𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌))) |
| 4 | breq1 5128 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ (𝑋 ∧ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) | |
| 5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑍 → (((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)) ↔ ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) → 𝑍 ≤ (𝑋 ∧ 𝑌)))) |
| 6 | meetle.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | meetle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 8 | meetle.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 9 | meetle.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 10 | meetle.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | meetle.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | meetle.e | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
| 13 | 6, 7, 8, 9, 10, 11, 12 | meetlem 18416 | . . . 4 ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
| 14 | 13 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌))) |
| 15 | meetle.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 16 | 5, 14, 15 | rspcdva 3607 | . 2 ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) → 𝑍 ≤ (𝑋 ∧ 𝑌))) |
| 17 | 6, 7, 8, 9, 10, 11, 12 | lemeet1 18417 | . . . 4 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| 18 | 6, 8, 9, 10, 11, 12 | meetcl 18411 | . . . . 5 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 19 | 6, 7 | postr 18341 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑍 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → 𝑍 ≤ 𝑋)) |
| 20 | 9, 15, 18, 10, 19 | syl13anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → 𝑍 ≤ 𝑋)) |
| 21 | 17, 20 | mpan2d 694 | . . 3 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → 𝑍 ≤ 𝑋)) |
| 22 | 6, 7, 8, 9, 10, 11, 12 | lemeet2 18418 | . . . 4 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| 23 | 6, 7 | postr 18341 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑍 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) → 𝑍 ≤ 𝑌)) |
| 24 | 9, 15, 18, 11, 23 | syl13anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) → 𝑍 ≤ 𝑌)) |
| 25 | 22, 24 | mpan2d 694 | . . 3 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → 𝑍 ≤ 𝑌)) |
| 26 | 21, 25 | jcad 512 | . 2 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → (𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌))) |
| 27 | 16, 26 | impbid 212 | 1 ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 〈cop 4614 class class class wbr 5125 dom cdm 5667 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 lecple 17284 Posetcpo 18328 meetcmee 18333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-poset 18334 df-glb 18366 df-meet 18368 |
| This theorem is referenced by: latlem12 18485 |
| Copyright terms: Public domain | W3C validator |