![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetle | Structured version Visualization version GIF version |
Description: A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
meetle.b | ⊢ 𝐵 = (Base‘𝐾) |
meetle.l | ⊢ ≤ = (le‘𝐾) |
meetle.m | ⊢ ∧ = (meet‘𝐾) |
meetle.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
meetle.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
meetle.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
meetle.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
meetle.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
Ref | Expression |
---|---|
meetle | ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4846 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ 𝑋 ↔ 𝑍 ≤ 𝑋)) | |
2 | breq1 4846 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ 𝑌 ↔ 𝑍 ≤ 𝑌)) | |
3 | 1, 2 | anbi12d 625 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) ↔ (𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌))) |
4 | breq1 4846 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ (𝑋 ∧ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) | |
5 | 3, 4 | imbi12d 336 | . . 3 ⊢ (𝑧 = 𝑍 → (((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)) ↔ ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) → 𝑍 ≤ (𝑋 ∧ 𝑌)))) |
6 | meetle.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
7 | meetle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
8 | meetle.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
9 | meetle.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
10 | meetle.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | meetle.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | meetle.e | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
13 | 6, 7, 8, 9, 10, 11, 12 | meetlem 17340 | . . . 4 ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
14 | 13 | simprd 490 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌))) |
15 | meetle.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
16 | 5, 14, 15 | rspcdva 3503 | . 2 ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) → 𝑍 ≤ (𝑋 ∧ 𝑌))) |
17 | 6, 7, 8, 9, 10, 11, 12 | lemeet1 17341 | . . . 4 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) |
18 | 6, 8, 9, 10, 11, 12 | meetcl 17335 | . . . . 5 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
19 | 6, 7 | postr 17268 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑍 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → 𝑍 ≤ 𝑋)) |
20 | 9, 15, 18, 10, 19 | syl13anc 1492 | . . . 4 ⊢ (𝜑 → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → 𝑍 ≤ 𝑋)) |
21 | 17, 20 | mpan2d 686 | . . 3 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → 𝑍 ≤ 𝑋)) |
22 | 6, 7, 8, 9, 10, 11, 12 | lemeet2 17342 | . . . 4 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑌) |
23 | 6, 7 | postr 17268 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑍 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) → 𝑍 ≤ 𝑌)) |
24 | 9, 15, 18, 11, 23 | syl13anc 1492 | . . . 4 ⊢ (𝜑 → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) → 𝑍 ≤ 𝑌)) |
25 | 22, 24 | mpan2d 686 | . . 3 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → 𝑍 ≤ 𝑌)) |
26 | 21, 25 | jcad 509 | . 2 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → (𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌))) |
27 | 16, 26 | impbid 204 | 1 ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 〈cop 4374 class class class wbr 4843 dom cdm 5312 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 lecple 16274 Posetcpo 17255 meetcmee 17260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-poset 17261 df-glb 17290 df-meet 17292 |
This theorem is referenced by: latlem12 17393 |
Copyright terms: Public domain | W3C validator |