MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetle Structured version   Visualization version   GIF version

Theorem meetle 18118
Description: A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetle.b 𝐵 = (Base‘𝐾)
meetle.l = (le‘𝐾)
meetle.m = (meet‘𝐾)
meetle.k (𝜑𝐾 ∈ Poset)
meetle.x (𝜑𝑋𝐵)
meetle.y (𝜑𝑌𝐵)
meetle.z (𝜑𝑍𝐵)
meetle.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meetle (𝜑 → ((𝑍 𝑋𝑍 𝑌) ↔ 𝑍 (𝑋 𝑌)))

Proof of Theorem meetle
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq1 5077 . . . . 5 (𝑧 = 𝑍 → (𝑧 𝑋𝑍 𝑋))
2 breq1 5077 . . . . 5 (𝑧 = 𝑍 → (𝑧 𝑌𝑍 𝑌))
31, 2anbi12d 631 . . . 4 (𝑧 = 𝑍 → ((𝑧 𝑋𝑧 𝑌) ↔ (𝑍 𝑋𝑍 𝑌)))
4 breq1 5077 . . . 4 (𝑧 = 𝑍 → (𝑧 (𝑋 𝑌) ↔ 𝑍 (𝑋 𝑌)))
53, 4imbi12d 345 . . 3 (𝑧 = 𝑍 → (((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌)) ↔ ((𝑍 𝑋𝑍 𝑌) → 𝑍 (𝑋 𝑌))))
6 meetle.b . . . . 5 𝐵 = (Base‘𝐾)
7 meetle.l . . . . 5 = (le‘𝐾)
8 meetle.m . . . . 5 = (meet‘𝐾)
9 meetle.k . . . . 5 (𝜑𝐾 ∈ Poset)
10 meetle.x . . . . 5 (𝜑𝑋𝐵)
11 meetle.y . . . . 5 (𝜑𝑌𝐵)
12 meetle.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
136, 7, 8, 9, 10, 11, 12meetlem 18115 . . . 4 (𝜑 → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
1413simprd 496 . . 3 (𝜑 → ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌)))
15 meetle.z . . 3 (𝜑𝑍𝐵)
165, 14, 15rspcdva 3562 . 2 (𝜑 → ((𝑍 𝑋𝑍 𝑌) → 𝑍 (𝑋 𝑌)))
176, 7, 8, 9, 10, 11, 12lemeet1 18116 . . . 4 (𝜑 → (𝑋 𝑌) 𝑋)
186, 8, 9, 10, 11, 12meetcl 18110 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
196, 7postr 18038 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑍𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵)) → ((𝑍 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑋) → 𝑍 𝑋))
209, 15, 18, 10, 19syl13anc 1371 . . . 4 (𝜑 → ((𝑍 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑋) → 𝑍 𝑋))
2117, 20mpan2d 691 . . 3 (𝜑 → (𝑍 (𝑋 𝑌) → 𝑍 𝑋))
226, 7, 8, 9, 10, 11, 12lemeet2 18117 . . . 4 (𝜑 → (𝑋 𝑌) 𝑌)
236, 7postr 18038 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑍𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑍 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑌) → 𝑍 𝑌))
249, 15, 18, 11, 23syl13anc 1371 . . . 4 (𝜑 → ((𝑍 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑌) → 𝑍 𝑌))
2522, 24mpan2d 691 . . 3 (𝜑 → (𝑍 (𝑋 𝑌) → 𝑍 𝑌))
2621, 25jcad 513 . 2 (𝜑 → (𝑍 (𝑋 𝑌) → (𝑍 𝑋𝑍 𝑌)))
2716, 26impbid 211 1 (𝜑 → ((𝑍 𝑋𝑍 𝑌) ↔ 𝑍 (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cop 4567   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  Posetcpo 18025  meetcmee 18030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-poset 18031  df-glb 18065  df-meet 18067
This theorem is referenced by:  latlem12  18184
  Copyright terms: Public domain W3C validator