Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > meetle | Structured version Visualization version GIF version |
Description: A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
meetle.b | ⊢ 𝐵 = (Base‘𝐾) |
meetle.l | ⊢ ≤ = (le‘𝐾) |
meetle.m | ⊢ ∧ = (meet‘𝐾) |
meetle.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
meetle.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
meetle.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
meetle.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
meetle.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
Ref | Expression |
---|---|
meetle | ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ 𝑋 ↔ 𝑍 ≤ 𝑋)) | |
2 | breq1 5077 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ 𝑌 ↔ 𝑍 ≤ 𝑌)) | |
3 | 1, 2 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) ↔ (𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌))) |
4 | breq1 5077 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 ≤ (𝑋 ∧ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) | |
5 | 3, 4 | imbi12d 345 | . . 3 ⊢ (𝑧 = 𝑍 → (((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)) ↔ ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) → 𝑍 ≤ (𝑋 ∧ 𝑌)))) |
6 | meetle.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
7 | meetle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
8 | meetle.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
9 | meetle.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
10 | meetle.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | meetle.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | meetle.e | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
13 | 6, 7, 8, 9, 10, 11, 12 | meetlem 18115 | . . . 4 ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
14 | 13 | simprd 496 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌))) |
15 | meetle.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
16 | 5, 14, 15 | rspcdva 3562 | . 2 ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) → 𝑍 ≤ (𝑋 ∧ 𝑌))) |
17 | 6, 7, 8, 9, 10, 11, 12 | lemeet1 18116 | . . . 4 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) |
18 | 6, 8, 9, 10, 11, 12 | meetcl 18110 | . . . . 5 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
19 | 6, 7 | postr 18038 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑍 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → 𝑍 ≤ 𝑋)) |
20 | 9, 15, 18, 10, 19 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → 𝑍 ≤ 𝑋)) |
21 | 17, 20 | mpan2d 691 | . . 3 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → 𝑍 ≤ 𝑋)) |
22 | 6, 7, 8, 9, 10, 11, 12 | lemeet2 18117 | . . . 4 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑌) |
23 | 6, 7 | postr 18038 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑍 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) → 𝑍 ≤ 𝑌)) |
24 | 9, 15, 18, 11, 23 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑍 ≤ (𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) → 𝑍 ≤ 𝑌)) |
25 | 22, 24 | mpan2d 691 | . . 3 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → 𝑍 ≤ 𝑌)) |
26 | 21, 25 | jcad 513 | . 2 ⊢ (𝜑 → (𝑍 ≤ (𝑋 ∧ 𝑌) → (𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌))) |
27 | 16, 26 | impbid 211 | 1 ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 〈cop 4567 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 Posetcpo 18025 meetcmee 18030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-poset 18031 df-glb 18065 df-meet 18067 |
This theorem is referenced by: latlem12 18184 |
Copyright terms: Public domain | W3C validator |