![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joinle | Structured version Visualization version GIF version |
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
joinle.b | ⊢ 𝐵 = (Base‘𝐾) |
joinle.l | ⊢ ≤ = (le‘𝐾) |
joinle.j | ⊢ ∨ = (join‘𝐾) |
joinle.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
joinle.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
joinle.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
joinle.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
joinle.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
Ref | Expression |
---|---|
joinle | ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋 ≤ 𝑧 ↔ 𝑋 ≤ 𝑍)) | |
2 | breq2 5152 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑌 ≤ 𝑧 ↔ 𝑌 ≤ 𝑍)) | |
3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) ↔ (𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍))) |
4 | breq2 5152 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋 ∨ 𝑌) ≤ 𝑧 ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) | |
5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑍 → (((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧) ↔ ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) → (𝑋 ∨ 𝑌) ≤ 𝑍))) |
6 | joinle.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
7 | joinle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
8 | joinle.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
9 | joinle.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
10 | joinle.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | joinle.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | joinle.e | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) | |
13 | 6, 7, 8, 9, 10, 11, 12 | joinlem 18441 | . . . 4 ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
14 | 13 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧)) |
15 | joinle.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
16 | 5, 14, 15 | rspcdva 3623 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) → (𝑋 ∨ 𝑌) ≤ 𝑍)) |
17 | 6, 7, 8, 9, 10, 11, 12 | lejoin1 18442 | . . . 4 ⊢ (𝜑 → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
18 | 6, 8, 9, 10, 11, 12 | joincl 18436 | . . . . 5 ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
19 | 6, 7 | postr 18378 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑌) ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
20 | 9, 10, 18, 15, 19 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑌) ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
21 | 17, 20 | mpand 695 | . . 3 ⊢ (𝜑 → ((𝑋 ∨ 𝑌) ≤ 𝑍 → 𝑋 ≤ 𝑍)) |
22 | 6, 7, 8, 9, 10, 11, 12 | lejoin2 18443 | . . . 4 ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
23 | 6, 7 | postr 18378 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 ≤ (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑌) ≤ 𝑍) → 𝑌 ≤ 𝑍)) |
24 | 9, 11, 18, 15, 23 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑌 ≤ (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑌) ≤ 𝑍) → 𝑌 ≤ 𝑍)) |
25 | 22, 24 | mpand 695 | . . 3 ⊢ (𝜑 → ((𝑋 ∨ 𝑌) ≤ 𝑍 → 𝑌 ≤ 𝑍)) |
26 | 21, 25 | jcad 512 | . 2 ⊢ (𝜑 → ((𝑋 ∨ 𝑌) ≤ 𝑍 → (𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍))) |
27 | 16, 26 | impbid 212 | 1 ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 〈cop 4637 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 Posetcpo 18365 joincjn 18369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-poset 18371 df-lub 18404 df-join 18406 |
This theorem is referenced by: latjle12 18508 |
Copyright terms: Public domain | W3C validator |