| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joinle | Structured version Visualization version GIF version | ||
| Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) |
| Ref | Expression |
|---|---|
| joinle.b | ⊢ 𝐵 = (Base‘𝐾) |
| joinle.l | ⊢ ≤ = (le‘𝐾) |
| joinle.j | ⊢ ∨ = (join‘𝐾) |
| joinle.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| joinle.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| joinle.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| joinle.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| joinle.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| Ref | Expression |
|---|---|
| joinle | ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋 ≤ 𝑧 ↔ 𝑋 ≤ 𝑍)) | |
| 2 | breq2 5099 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑌 ≤ 𝑧 ↔ 𝑌 ≤ 𝑍)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) ↔ (𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍))) |
| 4 | breq2 5099 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋 ∨ 𝑌) ≤ 𝑧 ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) | |
| 5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑍 → (((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧) ↔ ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) → (𝑋 ∨ 𝑌) ≤ 𝑍))) |
| 6 | joinle.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | joinle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 8 | joinle.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 9 | joinle.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 10 | joinle.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | joinle.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | joinle.e | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) | |
| 13 | 6, 7, 8, 9, 10, 11, 12 | joinlem 18306 | . . . 4 ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
| 14 | 13 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧)) |
| 15 | joinle.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 16 | 5, 14, 15 | rspcdva 3580 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) → (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| 17 | 6, 7, 8, 9, 10, 11, 12 | lejoin1 18307 | . . . 4 ⊢ (𝜑 → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| 18 | 6, 8, 9, 10, 11, 12 | joincl 18301 | . . . . 5 ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 19 | 6, 7 | postr 18245 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑌) ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 20 | 9, 10, 18, 15, 19 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑌) ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 21 | 17, 20 | mpand 695 | . . 3 ⊢ (𝜑 → ((𝑋 ∨ 𝑌) ≤ 𝑍 → 𝑋 ≤ 𝑍)) |
| 22 | 6, 7, 8, 9, 10, 11, 12 | lejoin2 18308 | . . . 4 ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
| 23 | 6, 7 | postr 18245 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 ≤ (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑌) ≤ 𝑍) → 𝑌 ≤ 𝑍)) |
| 24 | 9, 11, 18, 15, 23 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → ((𝑌 ≤ (𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑌) ≤ 𝑍) → 𝑌 ≤ 𝑍)) |
| 25 | 22, 24 | mpand 695 | . . 3 ⊢ (𝜑 → ((𝑋 ∨ 𝑌) ≤ 𝑍 → 𝑌 ≤ 𝑍)) |
| 26 | 21, 25 | jcad 512 | . 2 ⊢ (𝜑 → ((𝑋 ∨ 𝑌) ≤ 𝑍 → (𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍))) |
| 27 | 16, 26 | impbid 212 | 1 ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4585 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 lecple 17187 Posetcpo 18232 joincjn 18236 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-poset 18238 df-lub 18269 df-join 18271 |
| This theorem is referenced by: latjle12 18375 |
| Copyright terms: Public domain | W3C validator |