MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinle Structured version   Visualization version   GIF version

Theorem joinle 18369
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
joinle.b 𝐡 = (Baseβ€˜πΎ)
joinle.l ≀ = (leβ€˜πΎ)
joinle.j ∨ = (joinβ€˜πΎ)
joinle.k (πœ‘ β†’ 𝐾 ∈ Poset)
joinle.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
joinle.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
joinle.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
joinle.e (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ )
Assertion
Ref Expression
joinle (πœ‘ β†’ ((𝑋 ≀ 𝑍 ∧ π‘Œ ≀ 𝑍) ↔ (𝑋 ∨ π‘Œ) ≀ 𝑍))

Proof of Theorem joinle
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq2 5146 . . . . 5 (𝑧 = 𝑍 β†’ (𝑋 ≀ 𝑧 ↔ 𝑋 ≀ 𝑍))
2 breq2 5146 . . . . 5 (𝑧 = 𝑍 β†’ (π‘Œ ≀ 𝑧 ↔ π‘Œ ≀ 𝑍))
31, 2anbi12d 630 . . . 4 (𝑧 = 𝑍 β†’ ((𝑋 ≀ 𝑧 ∧ π‘Œ ≀ 𝑧) ↔ (𝑋 ≀ 𝑍 ∧ π‘Œ ≀ 𝑍)))
4 breq2 5146 . . . 4 (𝑧 = 𝑍 β†’ ((𝑋 ∨ π‘Œ) ≀ 𝑧 ↔ (𝑋 ∨ π‘Œ) ≀ 𝑍))
53, 4imbi12d 344 . . 3 (𝑧 = 𝑍 β†’ (((𝑋 ≀ 𝑧 ∧ π‘Œ ≀ 𝑧) β†’ (𝑋 ∨ π‘Œ) ≀ 𝑧) ↔ ((𝑋 ≀ 𝑍 ∧ π‘Œ ≀ 𝑍) β†’ (𝑋 ∨ π‘Œ) ≀ 𝑍)))
6 joinle.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
7 joinle.l . . . . 5 ≀ = (leβ€˜πΎ)
8 joinle.j . . . . 5 ∨ = (joinβ€˜πΎ)
9 joinle.k . . . . 5 (πœ‘ β†’ 𝐾 ∈ Poset)
10 joinle.x . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐡)
11 joinle.y . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝐡)
12 joinle.e . . . . 5 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ )
136, 7, 8, 9, 10, 11, 12joinlem 18366 . . . 4 (πœ‘ β†’ ((𝑋 ≀ (𝑋 ∨ π‘Œ) ∧ π‘Œ ≀ (𝑋 ∨ π‘Œ)) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑋 ≀ 𝑧 ∧ π‘Œ ≀ 𝑧) β†’ (𝑋 ∨ π‘Œ) ≀ 𝑧)))
1413simprd 495 . . 3 (πœ‘ β†’ βˆ€π‘§ ∈ 𝐡 ((𝑋 ≀ 𝑧 ∧ π‘Œ ≀ 𝑧) β†’ (𝑋 ∨ π‘Œ) ≀ 𝑧))
15 joinle.z . . 3 (πœ‘ β†’ 𝑍 ∈ 𝐡)
165, 14, 15rspcdva 3608 . 2 (πœ‘ β†’ ((𝑋 ≀ 𝑍 ∧ π‘Œ ≀ 𝑍) β†’ (𝑋 ∨ π‘Œ) ≀ 𝑍))
176, 7, 8, 9, 10, 11, 12lejoin1 18367 . . . 4 (πœ‘ β†’ 𝑋 ≀ (𝑋 ∨ π‘Œ))
186, 8, 9, 10, 11, 12joincl 18361 . . . . 5 (πœ‘ β†’ (𝑋 ∨ π‘Œ) ∈ 𝐡)
196, 7postr 18303 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐡 ∧ (𝑋 ∨ π‘Œ) ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ≀ (𝑋 ∨ π‘Œ) ∧ (𝑋 ∨ π‘Œ) ≀ 𝑍) β†’ 𝑋 ≀ 𝑍))
209, 10, 18, 15, 19syl13anc 1370 . . . 4 (πœ‘ β†’ ((𝑋 ≀ (𝑋 ∨ π‘Œ) ∧ (𝑋 ∨ π‘Œ) ≀ 𝑍) β†’ 𝑋 ≀ 𝑍))
2117, 20mpand 694 . . 3 (πœ‘ β†’ ((𝑋 ∨ π‘Œ) ≀ 𝑍 β†’ 𝑋 ≀ 𝑍))
226, 7, 8, 9, 10, 11, 12lejoin2 18368 . . . 4 (πœ‘ β†’ π‘Œ ≀ (𝑋 ∨ π‘Œ))
236, 7postr 18303 . . . . 5 ((𝐾 ∈ Poset ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∨ π‘Œ) ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((π‘Œ ≀ (𝑋 ∨ π‘Œ) ∧ (𝑋 ∨ π‘Œ) ≀ 𝑍) β†’ π‘Œ ≀ 𝑍))
249, 11, 18, 15, 23syl13anc 1370 . . . 4 (πœ‘ β†’ ((π‘Œ ≀ (𝑋 ∨ π‘Œ) ∧ (𝑋 ∨ π‘Œ) ≀ 𝑍) β†’ π‘Œ ≀ 𝑍))
2522, 24mpand 694 . . 3 (πœ‘ β†’ ((𝑋 ∨ π‘Œ) ≀ 𝑍 β†’ π‘Œ ≀ 𝑍))
2621, 25jcad 512 . 2 (πœ‘ β†’ ((𝑋 ∨ π‘Œ) ≀ 𝑍 β†’ (𝑋 ≀ 𝑍 ∧ π‘Œ ≀ 𝑍)))
2716, 26impbid 211 1 (πœ‘ β†’ ((𝑋 ≀ 𝑍 ∧ π‘Œ ≀ 𝑍) ↔ (𝑋 ∨ π‘Œ) ≀ 𝑍))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  βŸ¨cop 4630   class class class wbr 5142  dom cdm 5672  β€˜cfv 6542  (class class class)co 7414  Basecbs 17171  lecple 17231  Posetcpo 18290  joincjn 18294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-poset 18296  df-lub 18329  df-join 18331
This theorem is referenced by:  latjle12  18433
  Copyright terms: Public domain W3C validator