MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinle Structured version   Visualization version   GIF version

Theorem joinle 18444
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
joinle.b 𝐵 = (Base‘𝐾)
joinle.l = (le‘𝐾)
joinle.j = (join‘𝐾)
joinle.k (𝜑𝐾 ∈ Poset)
joinle.x (𝜑𝑋𝐵)
joinle.y (𝜑𝑌𝐵)
joinle.z (𝜑𝑍𝐵)
joinle.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joinle (𝜑 → ((𝑋 𝑍𝑌 𝑍) ↔ (𝑋 𝑌) 𝑍))

Proof of Theorem joinle
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . . . . 5 (𝑧 = 𝑍 → (𝑋 𝑧𝑋 𝑍))
2 breq2 5152 . . . . 5 (𝑧 = 𝑍 → (𝑌 𝑧𝑌 𝑍))
31, 2anbi12d 632 . . . 4 (𝑧 = 𝑍 → ((𝑋 𝑧𝑌 𝑧) ↔ (𝑋 𝑍𝑌 𝑍)))
4 breq2 5152 . . . 4 (𝑧 = 𝑍 → ((𝑋 𝑌) 𝑧 ↔ (𝑋 𝑌) 𝑍))
53, 4imbi12d 344 . . 3 (𝑧 = 𝑍 → (((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧) ↔ ((𝑋 𝑍𝑌 𝑍) → (𝑋 𝑌) 𝑍)))
6 joinle.b . . . . 5 𝐵 = (Base‘𝐾)
7 joinle.l . . . . 5 = (le‘𝐾)
8 joinle.j . . . . 5 = (join‘𝐾)
9 joinle.k . . . . 5 (𝜑𝐾 ∈ Poset)
10 joinle.x . . . . 5 (𝜑𝑋𝐵)
11 joinle.y . . . . 5 (𝜑𝑌𝐵)
12 joinle.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
136, 7, 8, 9, 10, 11, 12joinlem 18441 . . . 4 (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
1413simprd 495 . . 3 (𝜑 → ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧))
15 joinle.z . . 3 (𝜑𝑍𝐵)
165, 14, 15rspcdva 3623 . 2 (𝜑 → ((𝑋 𝑍𝑌 𝑍) → (𝑋 𝑌) 𝑍))
176, 7, 8, 9, 10, 11, 12lejoin1 18442 . . . 4 (𝜑𝑋 (𝑋 𝑌))
186, 8, 9, 10, 11, 12joincl 18436 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
196, 7postr 18378 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑋 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑍) → 𝑋 𝑍))
209, 10, 18, 15, 19syl13anc 1371 . . . 4 (𝜑 → ((𝑋 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑍) → 𝑋 𝑍))
2117, 20mpand 695 . . 3 (𝜑 → ((𝑋 𝑌) 𝑍𝑋 𝑍))
226, 7, 8, 9, 10, 11, 12lejoin2 18443 . . . 4 (𝜑𝑌 (𝑋 𝑌))
236, 7postr 18378 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑌𝐵 ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑌 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑍) → 𝑌 𝑍))
249, 11, 18, 15, 23syl13anc 1371 . . . 4 (𝜑 → ((𝑌 (𝑋 𝑌) ∧ (𝑋 𝑌) 𝑍) → 𝑌 𝑍))
2522, 24mpand 695 . . 3 (𝜑 → ((𝑋 𝑌) 𝑍𝑌 𝑍))
2621, 25jcad 512 . 2 (𝜑 → ((𝑋 𝑌) 𝑍 → (𝑋 𝑍𝑌 𝑍)))
2716, 26impbid 212 1 (𝜑 → ((𝑋 𝑍𝑌 𝑍) ↔ (𝑋 𝑌) 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cop 4637   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  Posetcpo 18365  joincjn 18369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-poset 18371  df-lub 18404  df-join 18406
This theorem is referenced by:  latjle12  18508
  Copyright terms: Public domain W3C validator