![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predonOLD | Structured version Visualization version GIF version |
Description: Obsolete version of predon 7770 as of 16-Oct-2024. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
predonOLD | ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predep 6325 | . 2 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = (On ∩ 𝐴)) | |
2 | onss 7769 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
3 | sseqin2 4210 | . . 3 ⊢ (𝐴 ⊆ On ↔ (On ∩ 𝐴) = 𝐴) | |
4 | 2, 3 | sylib 217 | . 2 ⊢ (𝐴 ∈ On → (On ∩ 𝐴) = 𝐴) |
5 | 1, 4 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∩ cin 3942 ⊆ wss 3943 E cep 5572 Predcpred 6293 Oncon0 6358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |