MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predonOLD Structured version   Visualization version   GIF version

Theorem predonOLD 7806
Description: Obsolete version of predon 7805 as of 16-Oct-2024. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
predonOLD (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)

Proof of Theorem predonOLD
StepHypRef Expression
1 predep 6353 . 2 (𝐴 ∈ On → Pred( E , On, 𝐴) = (On ∩ 𝐴))
2 onss 7804 . . 3 (𝐴 ∈ On → 𝐴 ⊆ On)
3 sseqin2 4231 . . 3 (𝐴 ⊆ On ↔ (On ∩ 𝐴) = 𝐴)
42, 3sylib 218 . 2 (𝐴 ∈ On → (On ∩ 𝐴) = 𝐴)
51, 4eqtrd 2775 1 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cin 3962  wss 3963   E cep 5588  Predcpred 6322  Oncon0 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator