![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predonOLD | Structured version Visualization version GIF version |
Description: Obsolete version of predon 7821 as of 16-Oct-2024. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
predonOLD | ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predep 6362 | . 2 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = (On ∩ 𝐴)) | |
2 | onss 7820 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
3 | sseqin2 4244 | . . 3 ⊢ (𝐴 ⊆ On ↔ (On ∩ 𝐴) = 𝐴) | |
4 | 2, 3 | sylib 218 | . 2 ⊢ (𝐴 ∈ On → (On ∩ 𝐴) = 𝐴) |
5 | 1, 4 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 E cep 5598 Predcpred 6331 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |