![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predonOLD | Structured version Visualization version GIF version |
Description: Obsolete version of predon 7773 as of 16-Oct-2024. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
predonOLD | ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predep 6332 | . 2 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = (On ∩ 𝐴)) | |
2 | onss 7772 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
3 | sseqin2 4216 | . . 3 ⊢ (𝐴 ⊆ On ↔ (On ∩ 𝐴) = 𝐴) | |
4 | 2, 3 | sylib 217 | . 2 ⊢ (𝐴 ∈ On → (On ∩ 𝐴) = 𝐴) |
5 | 1, 4 | eqtrd 2773 | 1 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∩ cin 3948 ⊆ wss 3949 E cep 5580 Predcpred 6300 Oncon0 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |