![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlidl | Structured version Visualization version GIF version |
Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
pridlidl | β’ ((π β RingOps β§ π β (PrIdlβπ )) β π β (Idlβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 β’ (1st βπ ) = (1st βπ ) | |
2 | eqid 2737 | . . . 4 β’ (2nd βπ ) = (2nd βπ ) | |
3 | eqid 2737 | . . . 4 β’ ran (1st βπ ) = ran (1st βπ ) | |
4 | 1, 2, 3 | ispridl 36496 | . . 3 β’ (π β RingOps β (π β (PrIdlβπ ) β (π β (Idlβπ ) β§ π β ran (1st βπ ) β§ βπ β (Idlβπ )βπ β (Idlβπ )(βπ₯ β π βπ¦ β π (π₯(2nd βπ )π¦) β π β (π β π β¨ π β π))))) |
5 | 3anass 1096 | . . 3 β’ ((π β (Idlβπ ) β§ π β ran (1st βπ ) β§ βπ β (Idlβπ )βπ β (Idlβπ )(βπ₯ β π βπ¦ β π (π₯(2nd βπ )π¦) β π β (π β π β¨ π β π))) β (π β (Idlβπ ) β§ (π β ran (1st βπ ) β§ βπ β (Idlβπ )βπ β (Idlβπ )(βπ₯ β π βπ¦ β π (π₯(2nd βπ )π¦) β π β (π β π β¨ π β π))))) | |
6 | 4, 5 | bitrdi 287 | . 2 β’ (π β RingOps β (π β (PrIdlβπ ) β (π β (Idlβπ ) β§ (π β ran (1st βπ ) β§ βπ β (Idlβπ )βπ β (Idlβπ )(βπ₯ β π βπ¦ β π (π₯(2nd βπ )π¦) β π β (π β π β¨ π β π)))))) |
7 | 6 | simprbda 500 | 1 β’ ((π β RingOps β§ π β (PrIdlβπ )) β π β (Idlβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β¨ wo 846 β§ w3a 1088 β wcel 2107 β wne 2944 βwral 3065 β wss 3911 ran crn 5635 βcfv 6497 (class class class)co 7358 1st c1st 7920 2nd c2nd 7921 RingOpscrngo 36356 Idlcidl 36469 PrIdlcpridl 36470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fv 6505 df-ov 7361 df-pridl 36473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |