Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlidl Structured version   Visualization version   GIF version

Theorem pridlidl 38064
Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Assertion
Ref Expression
pridlidl ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅))

Proof of Theorem pridlidl
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2736 . . . 4 (2nd𝑅) = (2nd𝑅)
3 eqid 2736 . . . 4 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3ispridl 38063 . . 3 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
5 3anass 1094 . . 3 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ (𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
64, 5bitrdi 287 . 2 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ (𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))))
76simprbda 498 1 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086  wcel 2109  wne 2933  wral 3052  wss 3931  ran crn 5660  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  RingOpscrngo 37923  Idlcidl 38036  PrIdlcpridl 38037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-pridl 38040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator