![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlidl | Structured version Visualization version GIF version |
Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
pridlidl | ⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2734 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | eqid 2734 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
4 | 1, 2, 3 | ispridl 37942 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st ‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑅)𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) |
5 | 3anass 1095 | . . 3 ⊢ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st ‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑅)𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ (𝑃 ≠ ran (1st ‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑅)𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | |
6 | 4, 5 | bitrdi 287 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ (𝑃 ≠ ran (1st ‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑅)𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))))) |
7 | 6 | simprbda 498 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 ∈ wcel 2103 ≠ wne 2942 ∀wral 3063 ⊆ wss 3970 ran crn 5700 ‘cfv 6572 (class class class)co 7445 1st c1st 8024 2nd c2nd 8025 RingOpscrngo 37802 Idlcidl 37915 PrIdlcpridl 37916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-iota 6524 df-fun 6574 df-fv 6580 df-ov 7448 df-pridl 37919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |