Step | Hyp | Ref
| Expression |
1 | | pridlval.1 |
. . . 4
β’ πΊ = (1st βπ
) |
2 | | pridlval.2 |
. . . 4
β’ π» = (2nd βπ
) |
3 | | pridlval.3 |
. . . 4
β’ π = ran πΊ |
4 | 1, 2, 3 | pridlval 36901 |
. . 3
β’ (π
β RingOps β
(PrIdlβπ
) = {π β (Idlβπ
) β£ (π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)))}) |
5 | 4 | eleq2d 2820 |
. 2
β’ (π
β RingOps β (π β (PrIdlβπ
) β π β {π β (Idlβπ
) β£ (π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)))})) |
6 | | neeq1 3004 |
. . . . 5
β’ (π = π β (π β π β π β π)) |
7 | | eleq2 2823 |
. . . . . . . 8
β’ (π = π β ((π₯π»π¦) β π β (π₯π»π¦) β π)) |
8 | 7 | 2ralbidv 3219 |
. . . . . . 7
β’ (π = π β (βπ₯ β π βπ¦ β π (π₯π»π¦) β π β βπ₯ β π βπ¦ β π (π₯π»π¦) β π)) |
9 | | sseq2 4009 |
. . . . . . . 8
β’ (π = π β (π β π β π β π)) |
10 | | sseq2 4009 |
. . . . . . . 8
β’ (π = π β (π β π β π β π)) |
11 | 9, 10 | orbi12d 918 |
. . . . . . 7
β’ (π = π β ((π β π β¨ π β π) β (π β π β¨ π β π))) |
12 | 8, 11 | imbi12d 345 |
. . . . . 6
β’ (π = π β ((βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)) β (βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)))) |
13 | 12 | 2ralbidv 3219 |
. . . . 5
β’ (π = π β (βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)) β βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)))) |
14 | 6, 13 | anbi12d 632 |
. . . 4
β’ (π = π β ((π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π))) β (π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π))))) |
15 | 14 | elrab 3684 |
. . 3
β’ (π β {π β (Idlβπ
) β£ (π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)))} β (π β (Idlβπ
) β§ (π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π))))) |
16 | | 3anass 1096 |
. . 3
β’ ((π β (Idlβπ
) β§ π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π))) β (π β (Idlβπ
) β§ (π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π))))) |
17 | 15, 16 | bitr4i 278 |
. 2
β’ (π β {π β (Idlβπ
) β£ (π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)))} β (π β (Idlβπ
) β§ π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π)))) |
18 | 5, 17 | bitrdi 287 |
1
β’ (π
β RingOps β (π β (PrIdlβπ
) β (π β (Idlβπ
) β§ π β π β§ βπ β (Idlβπ
)βπ β (Idlβπ
)(βπ₯ β π βπ¦ β π (π₯π»π¦) β π β (π β π β¨ π β π))))) |