![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcnidlem | Structured version Visualization version GIF version |
Description: Lemma for prstcnid 48723 and prstchomval 48731. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
prstcnid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
prstcnid.no | ⊢ (𝐸‘ndx) ≠ (comp‘ndx) |
Ref | Expression |
---|---|
prstcnidlem | ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcnid.c | . . . 4 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
2 | prstcnid.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
3 | 1, 2 | prstcval 48721 | . . 3 ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
4 | 3 | fveq2d 6919 | . 2 ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉))) |
5 | prstcnid.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
6 | prstcnid.no | . . 3 ⊢ (𝐸‘ndx) ≠ (comp‘ndx) | |
7 | 5, 6 | setsnid 17250 | . 2 ⊢ (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) = (𝐸‘((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
8 | 4, 7 | eqtr4di 2798 | 1 ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {csn 4648 〈cop 4654 × cxp 5693 ‘cfv 6568 (class class class)co 7443 1oc1o 8509 sSet csts 17204 Slot cslot 17222 ndxcnx 17234 lecple 17312 Hom chom 17316 compcco 17317 Proset cproset 18357 ProsetToCatcprstc 48719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-res 5707 df-iota 6520 df-fun 6570 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 df-sets 17205 df-slot 17223 df-prstc 48720 |
This theorem is referenced by: prstcnid 48723 prstchomval 48731 |
Copyright terms: Public domain | W3C validator |