| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcnidlem | Structured version Visualization version GIF version | ||
| Description: Lemma for prstcnid 49532 and prstchomval 49538. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
| prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
| prstcnid.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| prstcnid.no | ⊢ (𝐸‘ndx) ≠ (comp‘ndx) |
| Ref | Expression |
|---|---|
| prstcnidlem | ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | . . . 4 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
| 2 | prstcnid.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
| 3 | 1, 2 | prstcval 49530 | . . 3 ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 4 | 3 | fveq2d 6864 | . 2 ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉))) |
| 5 | prstcnid.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | prstcnid.no | . . 3 ⊢ (𝐸‘ndx) ≠ (comp‘ndx) | |
| 7 | 5, 6 | setsnid 17184 | . 2 ⊢ (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉)) = (𝐸‘((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) |
| 8 | 4, 7 | eqtr4di 2783 | 1 ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 {csn 4591 〈cop 4597 × cxp 5638 ‘cfv 6513 (class class class)co 7389 1oc1o 8429 sSet csts 17139 Slot cslot 17157 ndxcnx 17169 lecple 17233 Hom chom 17237 compcco 17238 Proset cproset 18259 ProsetToCatcprstc 49528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-sets 17140 df-slot 17158 df-prstc 49529 |
| This theorem is referenced by: prstcnid 49532 prstchomval 49538 |
| Copyright terms: Public domain | W3C validator |