Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstcnidlem Structured version   Visualization version   GIF version

Theorem prstcnidlem 48254
Description: Lemma for prstcnid 48255 and prstchomval 48263. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
prstcnid.e 𝐸 = Slot (𝐸‘ndx)
prstcnid.no (𝐸‘ndx) ≠ (comp‘ndx)
Assertion
Ref Expression
prstcnidlem (𝜑 → (𝐸𝐶) = (𝐸‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)))

Proof of Theorem prstcnidlem
StepHypRef Expression
1 prstcnid.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
2 prstcnid.k . . . 4 (𝜑𝐾 ∈ Proset )
31, 2prstcval 48253 . . 3 (𝜑𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
43fveq2d 6900 . 2 (𝜑 → (𝐸𝐶) = (𝐸‘((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩)))
5 prstcnid.e . . 3 𝐸 = Slot (𝐸‘ndx)
6 prstcnid.no . . 3 (𝐸‘ndx) ≠ (comp‘ndx)
75, 6setsnid 17181 . 2 (𝐸‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)) = (𝐸‘((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
84, 7eqtr4di 2783 1 (𝜑 → (𝐸𝐶) = (𝐸‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wne 2929  c0 4322  {csn 4630  cop 4636   × cxp 5676  cfv 6549  (class class class)co 7419  1oc1o 8480   sSet csts 17135  Slot cslot 17153  ndxcnx 17165  lecple 17243  Hom chom 17247  compcco 17248   Proset cproset 18288  ProsetToCatcprstc 48251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-sets 17136  df-slot 17154  df-prstc 48252
This theorem is referenced by:  prstcnid  48255  prstchomval  48263
  Copyright terms: Public domain W3C validator