| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubatN | Structured version Visualization version GIF version | ||
| Description: A member of a projective subspace is an atom. (Contributed by NM, 4-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atpsub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| atpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| psubatN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atpsub.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | atpsub.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 3 | 1, 2 | psubssat 39756 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ 𝐴) |
| 4 | 3 | sseld 3982 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑋 → 𝑌 ∈ 𝐴)) |
| 5 | 4 | 3impia 1118 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 Atomscatm 39264 PSubSpcpsubsp 39498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-psubsp 39505 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |