Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubssat Structured version   Visualization version   GIF version

Theorem psubssat 37768
Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atpsub.a 𝐴 = (Atoms‘𝐾)
atpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubssat ((𝐾𝐵𝑋𝑆) → 𝑋𝐴)

Proof of Theorem psubssat
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2738 . . 3 (join‘𝐾) = (join‘𝐾)
3 atpsub.a . . 3 𝐴 = (Atoms‘𝐾)
4 atpsub.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 37759 . 2 (𝐾𝐵 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
65simprbda 499 1 ((𝐾𝐵𝑋𝑆) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  PSubSpcpsubsp 37510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-psubsp 37517
This theorem is referenced by:  psubatN  37769  paddidm  37855  paddclN  37856  paddss  37859  pmodlem1  37860  pmod1i  37862  pmodl42N  37865  elpcliN  37907  pclidN  37910  pclbtwnN  37911  pclunN  37912  pclun2N  37913  pclfinN  37914  polssatN  37922  psubclsubN  37954
  Copyright terms: Public domain W3C validator