Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubssat Structured version   Visualization version   GIF version

Theorem psubssat 39711
Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atpsub.a 𝐴 = (Atoms‘𝐾)
atpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubssat ((𝐾𝐵𝑋𝑆) → 𝑋𝐴)

Proof of Theorem psubssat
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2740 . . 3 (join‘𝐾) = (join‘𝐾)
3 atpsub.a . . 3 𝐴 = (Atoms‘𝐾)
4 atpsub.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 39702 . 2 (𝐾𝐵 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
65simprbda 498 1 ((𝐾𝐵𝑋𝑆) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  Atomscatm 39219  PSubSpcpsubsp 39453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-psubsp 39460
This theorem is referenced by:  psubatN  39712  paddidm  39798  paddclN  39799  paddss  39802  pmodlem1  39803  pmod1i  39805  pmodl42N  39808  elpcliN  39850  pclidN  39853  pclbtwnN  39854  pclunN  39855  pclun2N  39856  pclfinN  39857  polssatN  39865  psubclsubN  39897
  Copyright terms: Public domain W3C validator