Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubssat Structured version   Visualization version   GIF version

Theorem psubssat 39876
Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atpsub.a 𝐴 = (Atoms‘𝐾)
atpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubssat ((𝐾𝐵𝑋𝑆) → 𝑋𝐴)

Proof of Theorem psubssat
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2733 . . 3 (join‘𝐾) = (join‘𝐾)
3 atpsub.a . . 3 𝐴 = (Atoms‘𝐾)
4 atpsub.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 39867 . 2 (𝐾𝐵 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
65simprbda 498 1 ((𝐾𝐵𝑋𝑆) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wss 3898   class class class wbr 5095  cfv 6488  (class class class)co 7354  lecple 17172  joincjn 18221  Atomscatm 39385  PSubSpcpsubsp 39618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-psubsp 39625
This theorem is referenced by:  psubatN  39877  paddidm  39963  paddclN  39964  paddss  39967  pmodlem1  39968  pmod1i  39970  pmodl42N  39973  elpcliN  40015  pclidN  40018  pclbtwnN  40019  pclunN  40020  pclun2N  40021  pclfinN  40022  polssatN  40030  psubclsubN  40062
  Copyright terms: Public domain W3C validator