Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubssat Structured version   Visualization version   GIF version

Theorem psubssat 39736
Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atpsub.a 𝐴 = (Atoms‘𝐾)
atpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubssat ((𝐾𝐵𝑋𝑆) → 𝑋𝐴)

Proof of Theorem psubssat
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2729 . . 3 (join‘𝐾) = (join‘𝐾)
3 atpsub.a . . 3 𝐴 = (Atoms‘𝐾)
4 atpsub.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 39727 . 2 (𝐾𝐵 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟𝑋))))
65simprbda 498 1 ((𝐾𝐵𝑋𝑆) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  Atomscatm 39244  PSubSpcpsubsp 39478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-psubsp 39485
This theorem is referenced by:  psubatN  39737  paddidm  39823  paddclN  39824  paddss  39827  pmodlem1  39828  pmod1i  39830  pmodl42N  39833  elpcliN  39875  pclidN  39878  pclbtwnN  39879  pclunN  39880  pclun2N  39881  pclfinN  39882  polssatN  39890  psubclsubN  39922
  Copyright terms: Public domain W3C validator