| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubssat | Structured version Visualization version GIF version | ||
| Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.) |
| Ref | Expression |
|---|---|
| atpsub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| atpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| psubssat | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | atpsub.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | atpsub.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | 1, 2, 3, 4 | ispsubsp 39710 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)))) |
| 6 | 5 | simprbda 498 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 lecple 17276 joincjn 18321 Atomscatm 39227 PSubSpcpsubsp 39461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-psubsp 39468 |
| This theorem is referenced by: psubatN 39720 paddidm 39806 paddclN 39807 paddss 39810 pmodlem1 39811 pmod1i 39813 pmodl42N 39816 elpcliN 39858 pclidN 39861 pclbtwnN 39862 pclunN 39863 pclun2N 39864 pclfinN 39865 polssatN 39873 psubclsubN 39905 |
| Copyright terms: Public domain | W3C validator |