![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubssat | Structured version Visualization version GIF version |
Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
atpsub.a | β’ π΄ = (AtomsβπΎ) |
atpsub.s | β’ π = (PSubSpβπΎ) |
Ref | Expression |
---|---|
psubssat | β’ ((πΎ β π΅ β§ π β π) β π β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
2 | eqid 2732 | . . 3 β’ (joinβπΎ) = (joinβπΎ) | |
3 | atpsub.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | atpsub.s | . . 3 β’ π = (PSubSpβπΎ) | |
5 | 1, 2, 3, 4 | ispsubsp 38611 | . 2 β’ (πΎ β π΅ β (π β π β (π β π΄ β§ βπ β π βπ β π βπ β π΄ (π(leβπΎ)(π(joinβπΎ)π) β π β π)))) |
6 | 5 | simprbda 499 | 1 β’ ((πΎ β π΅ β§ π β π) β π β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β wss 3948 class class class wbr 5148 βcfv 6543 (class class class)co 7408 lecple 17203 joincjn 18263 Atomscatm 38128 PSubSpcpsubsp 38362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-psubsp 38369 |
This theorem is referenced by: psubatN 38621 paddidm 38707 paddclN 38708 paddss 38711 pmodlem1 38712 pmod1i 38714 pmodl42N 38717 elpcliN 38759 pclidN 38762 pclbtwnN 38763 pclunN 38764 pclun2N 38765 pclfinN 38766 polssatN 38774 psubclsubN 38806 |
Copyright terms: Public domain | W3C validator |