Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubssat Structured version   Visualization version   GIF version

Theorem psubssat 38620
Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atpsub.a 𝐴 = (Atomsβ€˜πΎ)
atpsub.s 𝑆 = (PSubSpβ€˜πΎ)
Assertion
Ref Expression
psubssat ((𝐾 ∈ 𝐡 ∧ 𝑋 ∈ 𝑆) β†’ 𝑋 βŠ† 𝐴)

Proof of Theorem psubssat
Dummy variables π‘ž 𝑝 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
2 eqid 2732 . . 3 (joinβ€˜πΎ) = (joinβ€˜πΎ)
3 atpsub.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 atpsub.s . . 3 𝑆 = (PSubSpβ€˜πΎ)
51, 2, 3, 4ispsubsp 38611 . 2 (𝐾 ∈ 𝐡 β†’ (𝑋 ∈ 𝑆 ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ 𝑋))))
65simprbda 499 1 ((𝐾 ∈ 𝐡 ∧ 𝑋 ∈ 𝑆) β†’ 𝑋 βŠ† 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  Atomscatm 38128  PSubSpcpsubsp 38362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-psubsp 38369
This theorem is referenced by:  psubatN  38621  paddidm  38707  paddclN  38708  paddss  38711  pmodlem1  38712  pmod1i  38714  pmodl42N  38717  elpcliN  38759  pclidN  38762  pclbtwnN  38763  pclunN  38764  pclun2N  38765  pclfinN  38766  polssatN  38774  psubclsubN  38806
  Copyright terms: Public domain W3C validator