Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubssat | Structured version Visualization version GIF version |
Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
atpsub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
atpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
psubssat | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | atpsub.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | atpsub.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | 1, 2, 3, 4 | ispsubsp 37759 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ 𝑋)))) |
6 | 5 | simprbda 499 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 Atomscatm 37277 PSubSpcpsubsp 37510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-psubsp 37517 |
This theorem is referenced by: psubatN 37769 paddidm 37855 paddclN 37856 paddss 37859 pmodlem1 37860 pmod1i 37862 pmodl42N 37865 elpcliN 37907 pclidN 37910 pclbtwnN 37911 pclunN 37912 pclun2N 37913 pclfinN 37914 polssatN 37922 psubclsubN 37954 |
Copyright terms: Public domain | W3C validator |