MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supp0 Structured version   Visualization version   GIF version

Theorem supp0 8155
Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
supp0 (𝑍𝑊 → (∅ supp 𝑍) = ∅)

Proof of Theorem supp0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0ex 5308 . . 3 ∅ ∈ V
2 suppval 8152 . . 3 ((∅ ∈ V ∧ 𝑍𝑊) → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
31, 2mpan 686 . 2 (𝑍𝑊 → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
4 dm0 5921 . . 3 dom ∅ = ∅
5 rabeq 3444 . . 3 (dom ∅ = ∅ → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
64, 5mp1i 13 . 2 (𝑍𝑊 → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
7 rab0 4383 . . 3 {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅
87a1i 11 . 2 (𝑍𝑊 → {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅)
93, 6, 83eqtrd 2774 1 (𝑍𝑊 → (∅ supp 𝑍) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wne 2938  {crab 3430  Vcvv 3472  c0 4323  {csn 4629  dom cdm 5677  cima 5680  (class class class)co 7413   supp csupp 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-supp 8151
This theorem is referenced by:  0fsupp  9389  gsumval3  19818
  Copyright terms: Public domain W3C validator