![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supp0 | Structured version Visualization version GIF version |
Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
supp0 | ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
2 | suppval 8203 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑍 ∈ 𝑊) → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) | |
3 | 1, 2 | mpan 689 | . 2 ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) |
4 | dm0 5945 | . . 3 ⊢ dom ∅ = ∅ | |
5 | rabeq 3458 | . . 3 ⊢ (dom ∅ = ∅ → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ (𝑍 ∈ 𝑊 → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) |
7 | rab0 4409 | . . 3 ⊢ {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅ | |
8 | 7 | a1i 11 | . 2 ⊢ (𝑍 ∈ 𝑊 → {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅) |
9 | 3, 6, 8 | 3eqtrd 2784 | 1 ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 Vcvv 3488 ∅c0 4352 {csn 4648 dom cdm 5700 “ cima 5703 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: 0fsupp 9459 gsumval3 19949 |
Copyright terms: Public domain | W3C validator |