| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supp0 | Structured version Visualization version GIF version | ||
| Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019.) |
| Ref | Expression |
|---|---|
| supp0 | ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 2 | suppval 8101 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑍 ∈ 𝑊) → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) |
| 4 | dm0 5866 | . . 3 ⊢ dom ∅ = ∅ | |
| 5 | rabeq 3410 | . . 3 ⊢ (dom ∅ = ∅ → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) | |
| 6 | 4, 5 | mp1i 13 | . 2 ⊢ (𝑍 ∈ 𝑊 → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) |
| 7 | rab0 4335 | . . 3 ⊢ {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅ | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝑍 ∈ 𝑊 → {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅) |
| 9 | 3, 6, 8 | 3eqtrd 2772 | 1 ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 Vcvv 3437 ∅c0 4282 {csn 4577 dom cdm 5621 “ cima 5624 (class class class)co 7355 supp csupp 8099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-supp 8100 |
| This theorem is referenced by: 0fsupp 9285 gsumval3 19827 |
| Copyright terms: Public domain | W3C validator |