| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supp0 | Structured version Visualization version GIF version | ||
| Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019.) |
| Ref | Expression |
|---|---|
| supp0 | ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5257 | . . 3 ⊢ ∅ ∈ V | |
| 2 | suppval 8118 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑍 ∈ 𝑊) → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) |
| 4 | dm0 5874 | . . 3 ⊢ dom ∅ = ∅ | |
| 5 | rabeq 3417 | . . 3 ⊢ (dom ∅ = ∅ → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) | |
| 6 | 4, 5 | mp1i 13 | . 2 ⊢ (𝑍 ∈ 𝑊 → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) |
| 7 | rab0 4345 | . . 3 ⊢ {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅ | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝑍 ∈ 𝑊 → {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅) |
| 9 | 3, 6, 8 | 3eqtrd 2768 | 1 ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ∅c0 4292 {csn 4585 dom cdm 5631 “ cima 5634 (class class class)co 7369 supp csupp 8116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-supp 8117 |
| This theorem is referenced by: 0fsupp 9317 gsumval3 19813 |
| Copyright terms: Public domain | W3C validator |