MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supp0 Structured version   Visualization version   GIF version

Theorem supp0 8105
Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
supp0 (𝑍𝑊 → (∅ supp 𝑍) = ∅)

Proof of Theorem supp0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0ex 5249 . . 3 ∅ ∈ V
2 suppval 8102 . . 3 ((∅ ∈ V ∧ 𝑍𝑊) → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
31, 2mpan 690 . 2 (𝑍𝑊 → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
4 dm0 5867 . . 3 dom ∅ = ∅
5 rabeq 3411 . . 3 (dom ∅ = ∅ → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
64, 5mp1i 13 . 2 (𝑍𝑊 → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
7 rab0 4339 . . 3 {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅
87a1i 11 . 2 (𝑍𝑊 → {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅)
93, 6, 83eqtrd 2768 1 (𝑍𝑊 → (∅ supp 𝑍) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  {crab 3396  Vcvv 3438  c0 4286  {csn 4579  dom cdm 5623  cima 5626  (class class class)co 7353   supp csupp 8100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-supp 8101
This theorem is referenced by:  0fsupp  9299  gsumval3  19804
  Copyright terms: Public domain W3C validator