MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supp0 Structured version   Visualization version   GIF version

Theorem supp0 8147
Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
supp0 (𝑍𝑊 → (∅ supp 𝑍) = ∅)

Proof of Theorem supp0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0ex 5265 . . 3 ∅ ∈ V
2 suppval 8144 . . 3 ((∅ ∈ V ∧ 𝑍𝑊) → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
31, 2mpan 690 . 2 (𝑍𝑊 → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
4 dm0 5887 . . 3 dom ∅ = ∅
5 rabeq 3423 . . 3 (dom ∅ = ∅ → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
64, 5mp1i 13 . 2 (𝑍𝑊 → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}})
7 rab0 4352 . . 3 {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅
87a1i 11 . 2 (𝑍𝑊 → {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅)
93, 6, 83eqtrd 2769 1 (𝑍𝑊 → (∅ supp 𝑍) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  c0 4299  {csn 4592  dom cdm 5641  cima 5644  (class class class)co 7390   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-supp 8143
This theorem is referenced by:  0fsupp  9348  gsumval3  19844
  Copyright terms: Public domain W3C validator