Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supp0 | Structured version Visualization version GIF version |
Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
supp0 | ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
2 | suppval 7979 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑍 ∈ 𝑊) → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) |
4 | dm0 5829 | . . 3 ⊢ dom ∅ = ∅ | |
5 | rabeq 3418 | . . 3 ⊢ (dom ∅ = ∅ → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ (𝑍 ∈ 𝑊 → {𝑖 ∈ dom ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}}) |
7 | rab0 4316 | . . 3 ⊢ {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅ | |
8 | 7 | a1i 11 | . 2 ⊢ (𝑍 ∈ 𝑊 → {𝑖 ∈ ∅ ∣ (∅ “ {𝑖}) ≠ {𝑍}} = ∅) |
9 | 3, 6, 8 | 3eqtrd 2782 | 1 ⊢ (𝑍 ∈ 𝑊 → (∅ supp 𝑍) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ∅c0 4256 {csn 4561 dom cdm 5589 “ cima 5592 (class class class)co 7275 supp csupp 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-supp 7978 |
This theorem is referenced by: 0fsupp 9150 gsumval3 19508 |
Copyright terms: Public domain | W3C validator |