MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leftval Structured version   Visualization version   GIF version

Theorem leftval 27810
Description: The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
leftval ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem leftval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6907 . . . 4 (𝑦 = 𝐴 → ( O ‘( bday 𝑦)) = ( O ‘( bday 𝐴)))
2 breq2 5156 . . . 4 (𝑦 = 𝐴 → (𝑥 <s 𝑦𝑥 <s 𝐴))
31, 2rabeqbidv 3448 . . 3 (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday 𝑦)) ∣ 𝑥 <s 𝑦} = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴})
4 df-left 27797 . . 3 L = (𝑦 No ↦ {𝑥 ∈ ( O ‘( bday 𝑦)) ∣ 𝑥 <s 𝑦})
5 fvex 6915 . . . 4 ( O ‘( bday 𝐴)) ∈ V
65rabex 5338 . . 3 {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} ∈ V
73, 4, 6fvmpt 7010 . 2 (𝐴 No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴})
84fvmptndm 7041 . . 3 𝐴 No → ( L ‘𝐴) = ∅)
9 bdaydm 27727 . . . . . . . . 9 dom bday = No
109eleq2i 2821 . . . . . . . 8 (𝐴 ∈ dom bday 𝐴 No )
11 ndmfv 6937 . . . . . . . 8 𝐴 ∈ dom bday → ( bday 𝐴) = ∅)
1210, 11sylnbir 330 . . . . . . 7 𝐴 No → ( bday 𝐴) = ∅)
1312fveq2d 6906 . . . . . 6 𝐴 No → ( O ‘( bday 𝐴)) = ( O ‘∅))
14 old0 27806 . . . . . 6 ( O ‘∅) = ∅
1513, 14eqtrdi 2784 . . . . 5 𝐴 No → ( O ‘( bday 𝐴)) = ∅)
1615rabeqdv 3446 . . . 4 𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} = {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴})
17 rab0 4386 . . . 4 {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴} = ∅
1816, 17eqtrdi 2784 . . 3 𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} = ∅)
198, 18eqtr4d 2771 . 2 𝐴 No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴})
207, 19pm2.61i 182 1 ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  {crab 3430  c0 4326   class class class wbr 5152  dom cdm 5682  cfv 6553   No csur 27593   <s cslt 27594   bday cbday 27595   O cold 27790   L cleft 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-1o 8493  df-no 27596  df-bday 27598  df-made 27794  df-old 27795  df-left 27797
This theorem is referenced by:  ssltleft  27817  leftssold  27825  left1s  27841  lrold  27843  madebdaylemlrcut  27845  sltlpss  27853  0elleft  27856  cofcutr  27864  cofcutrtime  27867  addsproplem2  27907  addsproplem4  27909  addsproplem6  27911  sleadd1  27926  negsproplem4  27963  negsproplem6  27965  negsid  27973  mulsproplem12  28047  precsexlem9  28133  sltonold  28173
  Copyright terms: Public domain W3C validator