| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leftval | Structured version Visualization version GIF version | ||
| Description: The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| leftval | ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6863 | . . . 4 ⊢ (𝑦 = 𝐴 → ( O ‘( bday ‘𝑦)) = ( O ‘( bday ‘𝐴))) | |
| 2 | breq2 5111 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴)) | |
| 3 | 1, 2 | rabeqbidv 3424 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑥 <s 𝑦} = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 4 | df-left 27758 | . . 3 ⊢ L = (𝑦 ∈ No ↦ {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑥 <s 𝑦}) | |
| 5 | fvex 6871 | . . . 4 ⊢ ( O ‘( bday ‘𝐴)) ∈ V | |
| 6 | 5 | rabex 5294 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} ∈ V |
| 7 | 3, 4, 6 | fvmpt 6968 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 8 | 4 | fvmptndm 6999 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = ∅) |
| 9 | bdaydm 27686 | . . . . . . . . 9 ⊢ dom bday = No | |
| 10 | 9 | eleq2i 2820 | . . . . . . . 8 ⊢ (𝐴 ∈ dom bday ↔ 𝐴 ∈ No ) |
| 11 | ndmfv 6893 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ dom bday → ( bday ‘𝐴) = ∅) | |
| 12 | 10, 11 | sylnbir 331 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ No → ( bday ‘𝐴) = ∅) |
| 13 | 12 | fveq2d 6862 | . . . . . 6 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ( O ‘∅)) |
| 14 | old0 27767 | . . . . . 6 ⊢ ( O ‘∅) = ∅ | |
| 15 | 13, 14 | eqtrdi 2780 | . . . . 5 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ∅) |
| 16 | 15 | rabeqdv 3421 | . . . 4 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} = {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴}) |
| 17 | rab0 4349 | . . . 4 ⊢ {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴} = ∅ | |
| 18 | 16, 17 | eqtrdi 2780 | . . 3 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} = ∅) |
| 19 | 8, 18 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 20 | 7, 19 | pm2.61i 182 | 1 ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {crab 3405 ∅c0 4296 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 No csur 27551 <s cslt 27552 bday cbday 27553 O cold 27751 L cleft 27753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-no 27554 df-bday 27556 df-made 27755 df-old 27756 df-left 27758 |
| This theorem is referenced by: elleft 27773 ssltleft 27782 leftssold 27790 left1s 27806 lrold 27808 madebdaylemlrcut 27810 sltlpss 27819 cofcutr 27832 cofcutrtime 27835 addsproplem2 27877 |
| Copyright terms: Public domain | W3C validator |