![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leftval | Structured version Visualization version GIF version |
Description: The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
leftval | ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6896 | . . . 4 ⊢ (𝑦 = 𝐴 → ( O ‘( bday ‘𝑦)) = ( O ‘( bday ‘𝐴))) | |
2 | breq2 5152 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴)) | |
3 | 1, 2 | rabeqbidv 3449 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑥 <s 𝑦} = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
4 | df-left 27342 | . . 3 ⊢ L = (𝑦 ∈ No ↦ {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑥 <s 𝑦}) | |
5 | fvex 6904 | . . . 4 ⊢ ( O ‘( bday ‘𝐴)) ∈ V | |
6 | 5 | rabex 5332 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} ∈ V |
7 | 3, 4, 6 | fvmpt 6998 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
8 | 4 | fvmptndm 7028 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = ∅) |
9 | bdaydm 27273 | . . . . . . . . 9 ⊢ dom bday = No | |
10 | 9 | eleq2i 2825 | . . . . . . . 8 ⊢ (𝐴 ∈ dom bday ↔ 𝐴 ∈ No ) |
11 | ndmfv 6926 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ dom bday → ( bday ‘𝐴) = ∅) | |
12 | 10, 11 | sylnbir 330 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ No → ( bday ‘𝐴) = ∅) |
13 | 12 | fveq2d 6895 | . . . . . 6 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ( O ‘∅)) |
14 | old0 27351 | . . . . . 6 ⊢ ( O ‘∅) = ∅ | |
15 | 13, 14 | eqtrdi 2788 | . . . . 5 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ∅) |
16 | 15 | rabeqdv 3447 | . . . 4 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} = {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴}) |
17 | rab0 4382 | . . . 4 ⊢ {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴} = ∅ | |
18 | 16, 17 | eqtrdi 2788 | . . 3 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} = ∅) |
19 | 8, 18 | eqtr4d 2775 | . 2 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
20 | 7, 19 | pm2.61i 182 | 1 ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 {crab 3432 ∅c0 4322 class class class wbr 5148 dom cdm 5676 ‘cfv 6543 No csur 27140 <s cslt 27141 bday cbday 27142 O cold 27335 L cleft 27337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-1o 8465 df-no 27143 df-bday 27145 df-made 27339 df-old 27340 df-left 27342 |
This theorem is referenced by: ssltleft 27362 leftssold 27370 left1s 27386 lrold 27388 madebdaylemlrcut 27390 sltlpss 27398 0elleft 27400 cofcutr 27408 cofcutrtime 27411 addsproplem2 27451 addsproplem4 27453 addsproplem6 27455 sleadd1 27469 negsproplem4 27502 negsproplem6 27504 negsid 27512 mulsproplem12 27580 precsexlem9 27658 |
Copyright terms: Public domain | W3C validator |