Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leftval Structured version   Visualization version   GIF version

Theorem leftval 33974
Description: The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
leftval ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem leftval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6761 . . . 4 (𝑦 = 𝐴 → ( O ‘( bday 𝑦)) = ( O ‘( bday 𝐴)))
2 breq2 5074 . . . 4 (𝑦 = 𝐴 → (𝑥 <s 𝑦𝑥 <s 𝐴))
31, 2rabeqbidv 3410 . . 3 (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday 𝑦)) ∣ 𝑥 <s 𝑦} = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴})
4 df-left 33961 . . 3 L = (𝑦 No ↦ {𝑥 ∈ ( O ‘( bday 𝑦)) ∣ 𝑥 <s 𝑦})
5 fvex 6769 . . . 4 ( O ‘( bday 𝐴)) ∈ V
65rabex 5251 . . 3 {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} ∈ V
73, 4, 6fvmpt 6857 . 2 (𝐴 No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴})
84fvmptndm 6887 . . 3 𝐴 No → ( L ‘𝐴) = ∅)
9 bdaydm 33896 . . . . . . . . 9 dom bday = No
109eleq2i 2830 . . . . . . . 8 (𝐴 ∈ dom bday 𝐴 No )
11 ndmfv 6786 . . . . . . . 8 𝐴 ∈ dom bday → ( bday 𝐴) = ∅)
1210, 11sylnbir 330 . . . . . . 7 𝐴 No → ( bday 𝐴) = ∅)
1312fveq2d 6760 . . . . . 6 𝐴 No → ( O ‘( bday 𝐴)) = ( O ‘∅))
14 old0 33970 . . . . . 6 ( O ‘∅) = ∅
1513, 14eqtrdi 2795 . . . . 5 𝐴 No → ( O ‘( bday 𝐴)) = ∅)
1615rabeqdv 3409 . . . 4 𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} = {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴})
17 rab0 4313 . . . 4 {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴} = ∅
1816, 17eqtrdi 2795 . . 3 𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} = ∅)
198, 18eqtr4d 2781 . 2 𝐴 No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴})
207, 19pm2.61i 182 1 ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  {crab 3067  c0 4253   class class class wbr 5070  dom cdm 5580  cfv 6418   No csur 33770   <s cslt 33771   bday cbday 33772   O cold 33954   L cleft 33956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-no 33773  df-bday 33775  df-made 33958  df-old 33959  df-left 33961
This theorem is referenced by:  ssltleft  33981  leftssold  33988  lrold  34004  madebdaylemlrcut  34006  sltlpss  34014  cofcutr  34019  cofcutrtime  34020
  Copyright terms: Public domain W3C validator