| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leftval | Structured version Visualization version GIF version | ||
| Description: The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| leftval | ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6865 | . . . 4 ⊢ (𝑦 = 𝐴 → ( O ‘( bday ‘𝑦)) = ( O ‘( bday ‘𝐴))) | |
| 2 | breq2 5113 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴)) | |
| 3 | 1, 2 | rabeqbidv 3427 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑥 <s 𝑦} = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 4 | df-left 27764 | . . 3 ⊢ L = (𝑦 ∈ No ↦ {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑥 <s 𝑦}) | |
| 5 | fvex 6873 | . . . 4 ⊢ ( O ‘( bday ‘𝐴)) ∈ V | |
| 6 | 5 | rabex 5296 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} ∈ V |
| 7 | 3, 4, 6 | fvmpt 6970 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 8 | 4 | fvmptndm 7001 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = ∅) |
| 9 | bdaydm 27692 | . . . . . . . . 9 ⊢ dom bday = No | |
| 10 | 9 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝐴 ∈ dom bday ↔ 𝐴 ∈ No ) |
| 11 | ndmfv 6895 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ dom bday → ( bday ‘𝐴) = ∅) | |
| 12 | 10, 11 | sylnbir 331 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ No → ( bday ‘𝐴) = ∅) |
| 13 | 12 | fveq2d 6864 | . . . . . 6 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ( O ‘∅)) |
| 14 | old0 27773 | . . . . . 6 ⊢ ( O ‘∅) = ∅ | |
| 15 | 13, 14 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ∅) |
| 16 | 15 | rabeqdv 3424 | . . . 4 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} = {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴}) |
| 17 | rab0 4351 | . . . 4 ⊢ {𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴} = ∅ | |
| 18 | 16, 17 | eqtrdi 2781 | . . 3 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} = ∅) |
| 19 | 8, 18 | eqtr4d 2768 | . 2 ⊢ (¬ 𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 20 | 7, 19 | pm2.61i 182 | 1 ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {crab 3408 ∅c0 4298 class class class wbr 5109 dom cdm 5640 ‘cfv 6513 No csur 27557 <s cslt 27558 bday cbday 27559 O cold 27757 L cleft 27759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-1o 8436 df-no 27560 df-bday 27562 df-made 27761 df-old 27762 df-left 27764 |
| This theorem is referenced by: elleft 27779 ssltleft 27788 leftssold 27796 left1s 27812 lrold 27814 madebdaylemlrcut 27816 sltlpss 27825 cofcutr 27838 cofcutrtime 27841 addsproplem2 27883 |
| Copyright terms: Public domain | W3C validator |