MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlk0on0 Structured version   Visualization version   GIF version

Theorem clwwlk0on0 27421
Description: There is no word over the set of vertices representing a closed walk on vertex 𝑋 of length 0 in a graph 𝐺. (Contributed by AV, 17-Feb-2022.) (Revised by AV, 25-Feb-2022.)
Assertion
Ref Expression
clwwlk0on0 (𝑋(ClWWalksNOn‘𝐺)0) = ∅

Proof of Theorem clwwlk0on0
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2808 . . . . 5 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
21rabbidv 3371 . . . 4 (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
3 oveq1 6883 . . . . . 6 (𝑛 = 0 → (𝑛 ClWWalksN 𝐺) = (0 ClWWalksN 𝐺))
4 clwwlkn0 27325 . . . . . 6 (0 ClWWalksN 𝐺) = ∅
53, 4syl6eq 2847 . . . . 5 (𝑛 = 0 → (𝑛 ClWWalksN 𝐺) = ∅)
65rabeqdv 3376 . . . 4 (𝑛 = 0 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋})
7 clwwlknonmpt2 27416 . . . 4 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
8 0ex 4982 . . . . 5 ∅ ∈ V
98rabex 5005 . . . 4 {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋} ∈ V
102, 6, 7, 9ovmpt2 7028 . . 3 ((𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋})
11 rab0 4154 . . 3 {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋} = ∅
1210, 11syl6eq 2847 . 2 ((𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = ∅)
137mpt2ndm0 7107 . 2 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = ∅)
1412, 13pm2.61i 177 1 (𝑋(ClWWalksNOn‘𝐺)0) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 385   = wceq 1653  wcel 2157  {crab 3091  c0 4113  cfv 6099  (class class class)co 6876  0cc0 10222  0cn0 11576  Vtxcvtx 26222   ClWWalksN cclwwlkn 27317  ClWWalksNOncclwwlknon 27414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-n0 11577  df-xnn0 11649  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-hash 13367  df-word 13531  df-clwwlk 27266  df-clwwlkn 27319  df-clwwlknon 27415
This theorem is referenced by:  clwwlknon0  27422
  Copyright terms: Public domain W3C validator