![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlk0on0 | Structured version Visualization version GIF version |
Description: There is no word over the set of vertices representing a closed walk on vertex 𝑋 of length 0 in a graph 𝐺. (Contributed by AV, 17-Feb-2022.) (Revised by AV, 25-Feb-2022.) |
Ref | Expression |
---|---|
clwwlk0on0 | ⊢ (𝑋(ClWWalksNOn‘𝐺)0) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2806 | . . . . 5 ⊢ (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋)) | |
2 | 1 | rabbidv 3425 | . . . 4 ⊢ (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
3 | oveq1 7023 | . . . . . 6 ⊢ (𝑛 = 0 → (𝑛 ClWWalksN 𝐺) = (0 ClWWalksN 𝐺)) | |
4 | clwwlkn0 27493 | . . . . . 6 ⊢ (0 ClWWalksN 𝐺) = ∅ | |
5 | 3, 4 | syl6eq 2847 | . . . . 5 ⊢ (𝑛 = 0 → (𝑛 ClWWalksN 𝐺) = ∅) |
6 | 5 | rabeqdv 3429 | . . . 4 ⊢ (𝑛 = 0 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋}) |
7 | clwwlknonmpo 27555 | . . . 4 ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | |
8 | 0ex 5102 | . . . . 5 ⊢ ∅ ∈ V | |
9 | 8 | rabex 5126 | . . . 4 ⊢ {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋} ∈ V |
10 | 2, 6, 7, 9 | ovmpo 7166 | . . 3 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋}) |
11 | rab0 4257 | . . 3 ⊢ {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋} = ∅ | |
12 | 10, 11 | syl6eq 2847 | . 2 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = ∅) |
13 | 7 | mpondm0 7245 | . 2 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = ∅) |
14 | 12, 13 | pm2.61i 183 | 1 ⊢ (𝑋(ClWWalksNOn‘𝐺)0) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1522 ∈ wcel 2081 {crab 3109 ∅c0 4211 ‘cfv 6225 (class class class)co 7016 0cc0 10383 ℕ0cn0 11745 Vtxcvtx 26464 ClWWalksN cclwwlkn 27489 ClWWalksNOncclwwlknon 27553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-n0 11746 df-xnn0 11816 df-z 11830 df-uz 12094 df-fz 12743 df-fzo 12884 df-hash 13541 df-word 13708 df-clwwlk 27447 df-clwwlkn 27490 df-clwwlknon 27554 |
This theorem is referenced by: clwwlknon0 27559 |
Copyright terms: Public domain | W3C validator |