![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlk0on0 | Structured version Visualization version GIF version |
Description: There is no word over the set of vertices representing a closed walk on vertex 𝑋 of length 0 in a graph 𝐺. (Contributed by AV, 17-Feb-2022.) (Revised by AV, 25-Feb-2022.) |
Ref | Expression |
---|---|
clwwlk0on0 | ⊢ (𝑋(ClWWalksNOn‘𝐺)0) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2752 | . . . . 5 ⊢ (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋)) | |
2 | 1 | rabbidv 3451 | . . . 4 ⊢ (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
3 | oveq1 7455 | . . . . . 6 ⊢ (𝑛 = 0 → (𝑛 ClWWalksN 𝐺) = (0 ClWWalksN 𝐺)) | |
4 | clwwlkn0 30060 | . . . . . 6 ⊢ (0 ClWWalksN 𝐺) = ∅ | |
5 | 3, 4 | eqtrdi 2796 | . . . . 5 ⊢ (𝑛 = 0 → (𝑛 ClWWalksN 𝐺) = ∅) |
6 | 5 | rabeqdv 3459 | . . . 4 ⊢ (𝑛 = 0 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋}) |
7 | clwwlknonmpo 30121 | . . . 4 ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | |
8 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
9 | 8 | rabex 5357 | . . . 4 ⊢ {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋} ∈ V |
10 | 2, 6, 7, 9 | ovmpo 7610 | . . 3 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋}) |
11 | rab0 4409 | . . 3 ⊢ {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋} = ∅ | |
12 | 10, 11 | eqtrdi 2796 | . 2 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = ∅) |
13 | 7 | mpondm0 7690 | . 2 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = ∅) |
14 | 12, 13 | pm2.61i 182 | 1 ⊢ (𝑋(ClWWalksNOn‘𝐺)0) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕ0cn0 12553 Vtxcvtx 29031 ClWWalksN cclwwlkn 30056 ClWWalksNOncclwwlknon 30119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-clwwlk 30014 df-clwwlkn 30057 df-clwwlknon 30120 |
This theorem is referenced by: clwwlknon0 30125 |
Copyright terms: Public domain | W3C validator |