MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlk0on0 Structured version   Visualization version   GIF version

Theorem clwwlk0on0 27873
Description: There is no word over the set of vertices representing a closed walk on vertex 𝑋 of length 0 in a graph 𝐺. (Contributed by AV, 17-Feb-2022.) (Revised by AV, 25-Feb-2022.)
Assertion
Ref Expression
clwwlk0on0 (𝑋(ClWWalksNOn‘𝐺)0) = ∅

Proof of Theorem clwwlk0on0
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2835 . . . . 5 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
21rabbidv 3482 . . . 4 (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
3 oveq1 7165 . . . . . 6 (𝑛 = 0 → (𝑛 ClWWalksN 𝐺) = (0 ClWWalksN 𝐺))
4 clwwlkn0 27808 . . . . . 6 (0 ClWWalksN 𝐺) = ∅
53, 4syl6eq 2874 . . . . 5 (𝑛 = 0 → (𝑛 ClWWalksN 𝐺) = ∅)
65rabeqdv 3486 . . . 4 (𝑛 = 0 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋})
7 clwwlknonmpo 27870 . . . 4 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
8 0ex 5213 . . . . 5 ∅ ∈ V
98rabex 5237 . . . 4 {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋} ∈ V
102, 6, 7, 9ovmpo 7312 . . 3 ((𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋})
11 rab0 4339 . . 3 {𝑤 ∈ ∅ ∣ (𝑤‘0) = 𝑋} = ∅
1210, 11syl6eq 2874 . 2 ((𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = ∅)
137mpondm0 7388 . 2 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 0 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)0) = ∅)
1412, 13pm2.61i 184 1 (𝑋(ClWWalksNOn‘𝐺)0) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  {crab 3144  c0 4293  cfv 6357  (class class class)co 7158  0cc0 10539  0cn0 11900  Vtxcvtx 26783   ClWWalksN cclwwlkn 27804  ClWWalksNOncclwwlknon 27868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-clwwlk 27762  df-clwwlkn 27805  df-clwwlknon 27869
This theorem is referenced by:  clwwlknon0  27874
  Copyright terms: Public domain W3C validator