![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdg0e | Structured version Visualization version GIF version |
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 29572, vdegp1bi 29573 and vdegp1ci 29574). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdg0e.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
vtxdg0e | ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdg0e.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | eqeq1i 2745 | . . . 4 ⊢ (𝐼 = ∅ ↔ (iEdg‘𝐺) = ∅) |
3 | dmeq 5928 | . . . . . 6 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅) | |
4 | dm0 5945 | . . . . . 6 ⊢ dom ∅ = ∅ | |
5 | 3, 4 | eqtrdi 2796 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = ∅) |
6 | 0fi 9108 | . . . . 5 ⊢ ∅ ∈ Fin | |
7 | 5, 6 | eqeltrdi 2852 | . . . 4 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) ∈ Fin) |
8 | 2, 7 | sylbi 217 | . . 3 ⊢ (𝐼 = ∅ → dom (iEdg‘𝐺) ∈ Fin) |
9 | simpl 482 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → 𝑈 ∈ 𝑉) | |
10 | vtxdgf.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | eqid 2740 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
12 | eqid 2740 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
13 | 10, 11, 12 | vtxdgfival 29505 | . . 3 ⊢ ((dom (iEdg‘𝐺) ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))) |
14 | 8, 9, 13 | syl2an2 685 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))) |
15 | 2, 5 | sylbi 217 | . . . . 5 ⊢ (𝐼 = ∅ → dom (iEdg‘𝐺) = ∅) |
16 | 15 | adantl 481 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → dom (iEdg‘𝐺) = ∅) |
17 | rabeq 3458 | . . . . . . . 8 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) | |
18 | rab0 4409 | . . . . . . . 8 ⊢ {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅ | |
19 | 17, 18 | eqtrdi 2796 | . . . . . . 7 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅) |
20 | 19 | fveq2d 6924 | . . . . . 6 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘∅)) |
21 | hash0 14416 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
22 | 20, 21 | eqtrdi 2796 | . . . . 5 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0) |
23 | rabeq 3458 | . . . . . . 7 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) | |
24 | 23 | fveq2d 6924 | . . . . . 6 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) |
25 | rab0 4409 | . . . . . . . 8 ⊢ {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = ∅ | |
26 | 25 | fveq2i 6923 | . . . . . . 7 ⊢ (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘∅) |
27 | 26, 21 | eqtri 2768 | . . . . . 6 ⊢ (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0 |
28 | 24, 27 | eqtrdi 2796 | . . . . 5 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0) |
29 | 22, 28 | oveq12d 7466 | . . . 4 ⊢ (dom (iEdg‘𝐺) = ∅ → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0)) |
30 | 16, 29 | syl 17 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0)) |
31 | 00id 11465 | . . 3 ⊢ (0 + 0) = 0 | |
32 | 30, 31 | eqtrdi 2796 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = 0) |
33 | 14, 32 | eqtrd 2780 | 1 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∅c0 4352 {csn 4648 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 0cc0 11184 + caddc 11187 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 VtxDegcvtxdg 29501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-xadd 13176 df-fz 13568 df-hash 14380 df-vtxdg 29502 |
This theorem is referenced by: vtxduhgr0e 29514 0edg0rgr 29608 eupth2lemb 30269 konigsberglem1 30284 konigsberglem2 30285 konigsberglem3 30286 |
Copyright terms: Public domain | W3C validator |