MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdg0e Structured version   Visualization version   GIF version

Theorem vtxdg0e 27377
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 27439, vdegp1bi 27440 and vdegp1ci 27441). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgf.v 𝑉 = (Vtx‘𝐺)
vtxdg0e.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
vtxdg0e ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0)

Proof of Theorem vtxdg0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vtxdg0e.i . . . . 5 𝐼 = (iEdg‘𝐺)
21eqeq1i 2763 . . . 4 (𝐼 = ∅ ↔ (iEdg‘𝐺) = ∅)
3 dmeq 5749 . . . . . 6 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅)
4 dm0 5766 . . . . . 6 dom ∅ = ∅
53, 4eqtrdi 2809 . . . . 5 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = ∅)
6 0fin 8753 . . . . 5 ∅ ∈ Fin
75, 6eqeltrdi 2860 . . . 4 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) ∈ Fin)
82, 7sylbi 220 . . 3 (𝐼 = ∅ → dom (iEdg‘𝐺) ∈ Fin)
9 simpl 486 . . 3 ((𝑈𝑉𝐼 = ∅) → 𝑈𝑉)
10 vtxdgf.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2758 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2758 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
1310, 11, 12vtxdgfival 27372 . . 3 ((dom (iEdg‘𝐺) ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})))
148, 9, 13syl2an2 685 . 2 ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})))
152, 5sylbi 220 . . . . 5 (𝐼 = ∅ → dom (iEdg‘𝐺) = ∅)
1615adantl 485 . . . 4 ((𝑈𝑉𝐼 = ∅) → dom (iEdg‘𝐺) = ∅)
17 rabeq 3396 . . . . . . . 8 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)})
18 rab0 4282 . . . . . . . 8 {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅
1917, 18eqtrdi 2809 . . . . . . 7 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅)
2019fveq2d 6667 . . . . . 6 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘∅))
21 hash0 13791 . . . . . 6 (♯‘∅) = 0
2220, 21eqtrdi 2809 . . . . 5 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0)
23 rabeq 3396 . . . . . . 7 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})
2423fveq2d 6667 . . . . . 6 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))
25 rab0 4282 . . . . . . . 8 {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = ∅
2625fveq2i 6666 . . . . . . 7 (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘∅)
2726, 21eqtri 2781 . . . . . 6 (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0
2824, 27eqtrdi 2809 . . . . 5 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0)
2922, 28oveq12d 7174 . . . 4 (dom (iEdg‘𝐺) = ∅ → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0))
3016, 29syl 17 . . 3 ((𝑈𝑉𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0))
31 00id 10866 . . 3 (0 + 0) = 0
3230, 31eqtrdi 2809 . 2 ((𝑈𝑉𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = 0)
3314, 32eqtrd 2793 1 ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3074  c0 4227  {csn 4525  dom cdm 5528  cfv 6340  (class class class)co 7156  Fincfn 8540  0cc0 10588   + caddc 10591  chash 13753  Vtxcvtx 26902  iEdgciedg 26903  VtxDegcvtxdg 27368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-n0 11948  df-z 12034  df-uz 12296  df-xadd 12562  df-fz 12953  df-hash 13754  df-vtxdg 27369
This theorem is referenced by:  vtxduhgr0e  27381  0edg0rgr  27475  eupth2lemb  28135  konigsberglem1  28150  konigsberglem2  28151  konigsberglem3  28152
  Copyright terms: Public domain W3C validator