MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdg0e Structured version   Visualization version   GIF version

Theorem vtxdg0e 27250
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 27312, vdegp1bi 27313 and vdegp1ci 27314). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgf.v 𝑉 = (Vtx‘𝐺)
vtxdg0e.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
vtxdg0e ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0)

Proof of Theorem vtxdg0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vtxdg0e.i . . . . 5 𝐼 = (iEdg‘𝐺)
21eqeq1i 2826 . . . 4 (𝐼 = ∅ ↔ (iEdg‘𝐺) = ∅)
3 dmeq 5766 . . . . . 6 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅)
4 dm0 5784 . . . . . 6 dom ∅ = ∅
53, 4syl6eq 2872 . . . . 5 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = ∅)
6 0fin 8740 . . . . 5 ∅ ∈ Fin
75, 6eqeltrdi 2921 . . . 4 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) ∈ Fin)
82, 7sylbi 219 . . 3 (𝐼 = ∅ → dom (iEdg‘𝐺) ∈ Fin)
9 simpl 485 . . 3 ((𝑈𝑉𝐼 = ∅) → 𝑈𝑉)
10 vtxdgf.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2821 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2821 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
1310, 11, 12vtxdgfival 27245 . . 3 ((dom (iEdg‘𝐺) ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})))
148, 9, 13syl2an2 684 . 2 ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})))
152, 5sylbi 219 . . . . 5 (𝐼 = ∅ → dom (iEdg‘𝐺) = ∅)
1615adantl 484 . . . 4 ((𝑈𝑉𝐼 = ∅) → dom (iEdg‘𝐺) = ∅)
17 rabeq 3483 . . . . . . . 8 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)})
18 rab0 4336 . . . . . . . 8 {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅
1917, 18syl6eq 2872 . . . . . . 7 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅)
2019fveq2d 6668 . . . . . 6 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘∅))
21 hash0 13722 . . . . . 6 (♯‘∅) = 0
2220, 21syl6eq 2872 . . . . 5 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0)
23 rabeq 3483 . . . . . . 7 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})
2423fveq2d 6668 . . . . . 6 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))
25 rab0 4336 . . . . . . . 8 {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = ∅
2625fveq2i 6667 . . . . . . 7 (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘∅)
2726, 21eqtri 2844 . . . . . 6 (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0
2824, 27syl6eq 2872 . . . . 5 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0)
2922, 28oveq12d 7168 . . . 4 (dom (iEdg‘𝐺) = ∅ → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0))
3016, 29syl 17 . . 3 ((𝑈𝑉𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0))
31 00id 10809 . . 3 (0 + 0) = 0
3230, 31syl6eq 2872 . 2 ((𝑈𝑉𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = 0)
3314, 32eqtrd 2856 1 ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  c0 4290  {csn 4560  dom cdm 5549  cfv 6349  (class class class)co 7150  Fincfn 8503  0cc0 10531   + caddc 10534  chash 13684  Vtxcvtx 26775  iEdgciedg 26776  VtxDegcvtxdg 27241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-xadd 12502  df-fz 12887  df-hash 13685  df-vtxdg 27242
This theorem is referenced by:  vtxduhgr0e  27254  0edg0rgr  27348  eupth2lemb  28010  konigsberglem1  28025  konigsberglem2  28026  konigsberglem3  28027
  Copyright terms: Public domain W3C validator