MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdg0e Structured version   Visualization version   GIF version

Theorem vtxdg0e 27841
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 27903, vdegp1bi 27904 and vdegp1ci 27905). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgf.v 𝑉 = (Vtx‘𝐺)
vtxdg0e.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
vtxdg0e ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0)

Proof of Theorem vtxdg0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vtxdg0e.i . . . . 5 𝐼 = (iEdg‘𝐺)
21eqeq1i 2743 . . . 4 (𝐼 = ∅ ↔ (iEdg‘𝐺) = ∅)
3 dmeq 5812 . . . . . 6 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅)
4 dm0 5829 . . . . . 6 dom ∅ = ∅
53, 4eqtrdi 2794 . . . . 5 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = ∅)
6 0fin 8954 . . . . 5 ∅ ∈ Fin
75, 6eqeltrdi 2847 . . . 4 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) ∈ Fin)
82, 7sylbi 216 . . 3 (𝐼 = ∅ → dom (iEdg‘𝐺) ∈ Fin)
9 simpl 483 . . 3 ((𝑈𝑉𝐼 = ∅) → 𝑈𝑉)
10 vtxdgf.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2738 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
1310, 11, 12vtxdgfival 27836 . . 3 ((dom (iEdg‘𝐺) ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})))
148, 9, 13syl2an2 683 . 2 ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})))
152, 5sylbi 216 . . . . 5 (𝐼 = ∅ → dom (iEdg‘𝐺) = ∅)
1615adantl 482 . . . 4 ((𝑈𝑉𝐼 = ∅) → dom (iEdg‘𝐺) = ∅)
17 rabeq 3418 . . . . . . . 8 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)})
18 rab0 4316 . . . . . . . 8 {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅
1917, 18eqtrdi 2794 . . . . . . 7 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅)
2019fveq2d 6778 . . . . . 6 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘∅))
21 hash0 14082 . . . . . 6 (♯‘∅) = 0
2220, 21eqtrdi 2794 . . . . 5 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0)
23 rabeq 3418 . . . . . . 7 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})
2423fveq2d 6778 . . . . . 6 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))
25 rab0 4316 . . . . . . . 8 {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = ∅
2625fveq2i 6777 . . . . . . 7 (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘∅)
2726, 21eqtri 2766 . . . . . 6 (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0
2824, 27eqtrdi 2794 . . . . 5 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0)
2922, 28oveq12d 7293 . . . 4 (dom (iEdg‘𝐺) = ∅ → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0))
3016, 29syl 17 . . 3 ((𝑈𝑉𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0))
31 00id 11150 . . 3 (0 + 0) = 0
3230, 31eqtrdi 2794 . 2 ((𝑈𝑉𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = 0)
3314, 32eqtrd 2778 1 ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  c0 4256  {csn 4561  dom cdm 5589  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871   + caddc 10874  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  VtxDegcvtxdg 27832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-xadd 12849  df-fz 13240  df-hash 14045  df-vtxdg 27833
This theorem is referenced by:  vtxduhgr0e  27845  0edg0rgr  27939  eupth2lemb  28601  konigsberglem1  28616  konigsberglem2  28617  konigsberglem3  28618
  Copyright terms: Public domain W3C validator