![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdg0e | Structured version Visualization version GIF version |
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 26841, vdegp1bi 26842 and vdegp1ci 26843). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdg0e.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
vtxdg0e | ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdg0e.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | eqeq1i 2830 | . . . 4 ⊢ (𝐼 = ∅ ↔ (iEdg‘𝐺) = ∅) |
3 | dmeq 5560 | . . . . . 6 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅) | |
4 | dm0 5575 | . . . . . 6 ⊢ dom ∅ = ∅ | |
5 | 3, 4 | syl6eq 2877 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = ∅) |
6 | 0fin 8463 | . . . . 5 ⊢ ∅ ∈ Fin | |
7 | 5, 6 | syl6eqel 2914 | . . . 4 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) ∈ Fin) |
8 | 2, 7 | sylbi 209 | . . 3 ⊢ (𝐼 = ∅ → dom (iEdg‘𝐺) ∈ Fin) |
9 | simpl 476 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → 𝑈 ∈ 𝑉) | |
10 | vtxdgf.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | eqid 2825 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
12 | eqid 2825 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
13 | 10, 11, 12 | vtxdgfival 26774 | . . 3 ⊢ ((dom (iEdg‘𝐺) ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))) |
14 | 8, 9, 13 | syl2an2 677 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))) |
15 | 2, 5 | sylbi 209 | . . . . 5 ⊢ (𝐼 = ∅ → dom (iEdg‘𝐺) = ∅) |
16 | 15 | adantl 475 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → dom (iEdg‘𝐺) = ∅) |
17 | rabeq 3405 | . . . . . . . 8 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) | |
18 | rab0 4187 | . . . . . . . 8 ⊢ {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅ | |
19 | 17, 18 | syl6eq 2877 | . . . . . . 7 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅) |
20 | 19 | fveq2d 6441 | . . . . . 6 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘∅)) |
21 | hash0 13455 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
22 | 20, 21 | syl6eq 2877 | . . . . 5 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0) |
23 | rabeq 3405 | . . . . . . 7 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) | |
24 | 23 | fveq2d 6441 | . . . . . 6 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) |
25 | rab0 4187 | . . . . . . . 8 ⊢ {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = ∅ | |
26 | 25 | fveq2i 6440 | . . . . . . 7 ⊢ (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘∅) |
27 | 26, 21 | eqtri 2849 | . . . . . 6 ⊢ (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0 |
28 | 24, 27 | syl6eq 2877 | . . . . 5 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0) |
29 | 22, 28 | oveq12d 6928 | . . . 4 ⊢ (dom (iEdg‘𝐺) = ∅ → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0)) |
30 | 16, 29 | syl 17 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0)) |
31 | 00id 10537 | . . 3 ⊢ (0 + 0) = 0 | |
32 | 30, 31 | syl6eq 2877 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = 0) |
33 | 14, 32 | eqtrd 2861 | 1 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 {crab 3121 ∅c0 4146 {csn 4399 dom cdm 5346 ‘cfv 6127 (class class class)co 6910 Fincfn 8228 0cc0 10259 + caddc 10262 ♯chash 13417 Vtxcvtx 26301 iEdgciedg 26302 VtxDegcvtxdg 26770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-n0 11626 df-z 11712 df-uz 11976 df-xadd 12240 df-fz 12627 df-hash 13418 df-vtxdg 26771 |
This theorem is referenced by: vtxduhgr0e 26783 0edg0rgr 26877 eupth2lemb 27610 konigsberglem1 27627 konigsberglem2 27628 konigsberglem3 27629 |
Copyright terms: Public domain | W3C validator |