MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdg0e Structured version   Visualization version   GIF version

Theorem vtxdg0e 27264
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 27326, vdegp1bi 27327 and vdegp1ci 27328). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgf.v 𝑉 = (Vtx‘𝐺)
vtxdg0e.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
vtxdg0e ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0)

Proof of Theorem vtxdg0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vtxdg0e.i . . . . 5 𝐼 = (iEdg‘𝐺)
21eqeq1i 2803 . . . 4 (𝐼 = ∅ ↔ (iEdg‘𝐺) = ∅)
3 dmeq 5736 . . . . . 6 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅)
4 dm0 5754 . . . . . 6 dom ∅ = ∅
53, 4eqtrdi 2849 . . . . 5 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = ∅)
6 0fin 8730 . . . . 5 ∅ ∈ Fin
75, 6eqeltrdi 2898 . . . 4 ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) ∈ Fin)
82, 7sylbi 220 . . 3 (𝐼 = ∅ → dom (iEdg‘𝐺) ∈ Fin)
9 simpl 486 . . 3 ((𝑈𝑉𝐼 = ∅) → 𝑈𝑉)
10 vtxdgf.v . . . 4 𝑉 = (Vtx‘𝐺)
11 eqid 2798 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2798 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
1310, 11, 12vtxdgfival 27259 . . 3 ((dom (iEdg‘𝐺) ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})))
148, 9, 13syl2an2 685 . 2 ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})))
152, 5sylbi 220 . . . . 5 (𝐼 = ∅ → dom (iEdg‘𝐺) = ∅)
1615adantl 485 . . . 4 ((𝑈𝑉𝐼 = ∅) → dom (iEdg‘𝐺) = ∅)
17 rabeq 3431 . . . . . . . 8 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)})
18 rab0 4291 . . . . . . . 8 {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅
1917, 18eqtrdi 2849 . . . . . . 7 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅)
2019fveq2d 6649 . . . . . 6 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘∅))
21 hash0 13724 . . . . . 6 (♯‘∅) = 0
2220, 21eqtrdi 2849 . . . . 5 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0)
23 rabeq 3431 . . . . . . 7 (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})
2423fveq2d 6649 . . . . . 6 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))
25 rab0 4291 . . . . . . . 8 {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = ∅
2625fveq2i 6648 . . . . . . 7 (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘∅)
2726, 21eqtri 2821 . . . . . 6 (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0
2824, 27eqtrdi 2849 . . . . 5 (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0)
2922, 28oveq12d 7153 . . . 4 (dom (iEdg‘𝐺) = ∅ → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0))
3016, 29syl 17 . . 3 ((𝑈𝑉𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0))
31 00id 10804 . . 3 (0 + 0) = 0
3230, 31eqtrdi 2849 . 2 ((𝑈𝑉𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = 0)
3314, 32eqtrd 2833 1 ((𝑈𝑉𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  c0 4243  {csn 4525  dom cdm 5519  cfv 6324  (class class class)co 7135  Fincfn 8492  0cc0 10526   + caddc 10529  chash 13686  Vtxcvtx 26789  iEdgciedg 26790  VtxDegcvtxdg 27255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-vtxdg 27256
This theorem is referenced by:  vtxduhgr0e  27268  0edg0rgr  27362  eupth2lemb  28022  konigsberglem1  28037  konigsberglem2  28038  konigsberglem3  28039
  Copyright terms: Public domain W3C validator