Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdg0e | Structured version Visualization version GIF version |
Description: The degree of a vertex in an empty graph is zero, because there are no edges. This is the base case for the induction for calculating the degree of a vertex, for example in a Königsberg graph (see also the induction steps vdegp1ai 27439, vdegp1bi 27440 and vdegp1ci 27441). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdg0e.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
vtxdg0e | ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdg0e.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | eqeq1i 2763 | . . . 4 ⊢ (𝐼 = ∅ ↔ (iEdg‘𝐺) = ∅) |
3 | dmeq 5749 | . . . . . 6 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅) | |
4 | dm0 5766 | . . . . . 6 ⊢ dom ∅ = ∅ | |
5 | 3, 4 | eqtrdi 2809 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = ∅) |
6 | 0fin 8753 | . . . . 5 ⊢ ∅ ∈ Fin | |
7 | 5, 6 | eqeltrdi 2860 | . . . 4 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) ∈ Fin) |
8 | 2, 7 | sylbi 220 | . . 3 ⊢ (𝐼 = ∅ → dom (iEdg‘𝐺) ∈ Fin) |
9 | simpl 486 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → 𝑈 ∈ 𝑉) | |
10 | vtxdgf.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | eqid 2758 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
12 | eqid 2758 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
13 | 10, 11, 12 | vtxdgfival 27372 | . . 3 ⊢ ((dom (iEdg‘𝐺) ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))) |
14 | 8, 9, 13 | syl2an2 685 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}))) |
15 | 2, 5 | sylbi 220 | . . . . 5 ⊢ (𝐼 = ∅ → dom (iEdg‘𝐺) = ∅) |
16 | 15 | adantl 485 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → dom (iEdg‘𝐺) = ∅) |
17 | rabeq 3396 | . . . . . . . 8 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) | |
18 | rab0 4282 | . . . . . . . 8 ⊢ {𝑥 ∈ ∅ ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅ | |
19 | 17, 18 | eqtrdi 2809 | . . . . . . 7 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅) |
20 | 19 | fveq2d 6667 | . . . . . 6 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘∅)) |
21 | hash0 13791 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
22 | 20, 21 | eqtrdi 2809 | . . . . 5 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0) |
23 | rabeq 3396 | . . . . . . 7 ⊢ (dom (iEdg‘𝐺) = ∅ → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) | |
24 | 23 | fveq2d 6667 | . . . . . 6 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) |
25 | rab0 4282 | . . . . . . . 8 ⊢ {𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}} = ∅ | |
26 | 25 | fveq2i 6666 | . . . . . . 7 ⊢ (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = (♯‘∅) |
27 | 26, 21 | eqtri 2781 | . . . . . 6 ⊢ (♯‘{𝑥 ∈ ∅ ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0 |
28 | 24, 27 | eqtrdi 2809 | . . . . 5 ⊢ (dom (iEdg‘𝐺) = ∅ → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}}) = 0) |
29 | 22, 28 | oveq12d 7174 | . . . 4 ⊢ (dom (iEdg‘𝐺) = ∅ → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0)) |
30 | 16, 29 | syl 17 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = (0 + 0)) |
31 | 00id 10866 | . . 3 ⊢ (0 + 0) = 0 | |
32 | 30, 31 | eqtrdi 2809 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑥)}) + (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑈}})) = 0) |
33 | 14, 32 | eqtrd 2793 | 1 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝐼 = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 ∅c0 4227 {csn 4525 dom cdm 5528 ‘cfv 6340 (class class class)co 7156 Fincfn 8540 0cc0 10588 + caddc 10591 ♯chash 13753 Vtxcvtx 26902 iEdgciedg 26903 VtxDegcvtxdg 27368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-xadd 12562 df-fz 12953 df-hash 13754 df-vtxdg 27369 |
This theorem is referenced by: vtxduhgr0e 27381 0edg0rgr 27475 eupth2lemb 28135 konigsberglem1 28150 konigsberglem2 28151 konigsberglem3 28152 |
Copyright terms: Public domain | W3C validator |