![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptrabfv | Structured version Visualization version GIF version |
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022.) |
Ref | Expression |
---|---|
fvmptrabfv.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑}) |
fvmptrabfv.r | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
fvmptrabfv | ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6332 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
2 | fvmptrabfv.r | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rabeqbidv 3345 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑} = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
4 | fvmptrabfv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑}) | |
5 | fvex 6342 | . . . 4 ⊢ (𝐺‘𝑋) ∈ V | |
6 | 5 | rabex 4946 | . . 3 ⊢ {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} ∈ V |
7 | 3, 4, 6 | fvmpt 6424 | . 2 ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
8 | fvprc 6326 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
9 | fvprc 6326 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐺‘𝑋) = ∅) | |
10 | 9 | rabeqdv 3344 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓}) |
11 | rab0 4102 | . . . 4 ⊢ {𝑦 ∈ ∅ ∣ 𝜓} = ∅ | |
12 | 10, 11 | syl6req 2822 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
13 | 8, 12 | eqtrd 2805 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
14 | 7, 13 | pm2.61i 176 | 1 ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 {crab 3065 Vcvv 3351 ∅c0 4063 ↦ cmpt 4863 ‘cfv 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 |
This theorem is referenced by: uvtxval 26512 |
Copyright terms: Public domain | W3C validator |