| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptrabfv | Structured version Visualization version GIF version | ||
| Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| fvmptrabfv.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑}) |
| fvmptrabfv.r | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| fvmptrabfv | ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 2 | fvmptrabfv.r | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rabeqbidv 3434 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑} = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
| 4 | fvmptrabfv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑}) | |
| 5 | fvex 6889 | . . . 4 ⊢ (𝐺‘𝑋) ∈ V | |
| 6 | 5 | rabex 5309 | . . 3 ⊢ {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} ∈ V |
| 7 | 3, 4, 6 | fvmpt 6986 | . 2 ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
| 8 | fvprc 6868 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 9 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐺‘𝑋) = ∅) | |
| 10 | 9 | rabeqdv 3431 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓}) |
| 11 | rab0 4361 | . . . 4 ⊢ {𝑦 ∈ ∅ ∣ 𝜓} = ∅ | |
| 12 | 10, 11 | eqtr2di 2787 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
| 13 | 8, 12 | eqtrd 2770 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
| 14 | 7, 13 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∅c0 4308 ↦ cmpt 5201 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 |
| This theorem is referenced by: uvtxval 29366 |
| Copyright terms: Public domain | W3C validator |