MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptrabfv Structured version   Visualization version   GIF version

Theorem fvmptrabfv 6966
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022.)
Hypotheses
Ref Expression
fvmptrabfv.f 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺𝑥) ∣ 𝜑})
fvmptrabfv.r (𝑥 = 𝑋 → (𝜑𝜓))
Assertion
Ref Expression
fvmptrabfv (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓}
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvmptrabfv
StepHypRef Expression
1 fveq2 6826 . . . 4 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2 fvmptrabfv.r . . . 4 (𝑥 = 𝑋 → (𝜑𝜓))
31, 2rabeqbidv 3415 . . 3 (𝑥 = 𝑋 → {𝑦 ∈ (𝐺𝑥) ∣ 𝜑} = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓})
4 fvmptrabfv.f . . 3 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺𝑥) ∣ 𝜑})
5 fvex 6839 . . . 4 (𝐺𝑋) ∈ V
65rabex 5281 . . 3 {𝑦 ∈ (𝐺𝑋) ∣ 𝜓} ∈ V
73, 4, 6fvmpt 6934 . 2 (𝑋 ∈ V → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓})
8 fvprc 6818 . . 3 𝑋 ∈ V → (𝐹𝑋) = ∅)
9 fvprc 6818 . . . . 5 𝑋 ∈ V → (𝐺𝑋) = ∅)
109rabeqdv 3412 . . . 4 𝑋 ∈ V → {𝑦 ∈ (𝐺𝑋) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓})
11 rab0 4339 . . . 4 {𝑦 ∈ ∅ ∣ 𝜓} = ∅
1210, 11eqtr2di 2781 . . 3 𝑋 ∈ V → ∅ = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓})
138, 12eqtrd 2764 . 2 𝑋 ∈ V → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓})
147, 13pm2.61i 182 1 (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  c0 4286  cmpt 5176  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  uvtxval  29350
  Copyright terms: Public domain W3C validator