MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptrabfv Structured version   Visualization version   GIF version

Theorem fvmptrabfv 7029
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022.)
Hypotheses
Ref Expression
fvmptrabfv.f 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺𝑥) ∣ 𝜑})
fvmptrabfv.r (𝑥 = 𝑋 → (𝜑𝜓))
Assertion
Ref Expression
fvmptrabfv (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓}
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvmptrabfv
StepHypRef Expression
1 fveq2 6891 . . . 4 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2 fvmptrabfv.r . . . 4 (𝑥 = 𝑋 → (𝜑𝜓))
31, 2rabeqbidv 3449 . . 3 (𝑥 = 𝑋 → {𝑦 ∈ (𝐺𝑥) ∣ 𝜑} = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓})
4 fvmptrabfv.f . . 3 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺𝑥) ∣ 𝜑})
5 fvex 6904 . . . 4 (𝐺𝑋) ∈ V
65rabex 5332 . . 3 {𝑦 ∈ (𝐺𝑋) ∣ 𝜓} ∈ V
73, 4, 6fvmpt 6998 . 2 (𝑋 ∈ V → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓})
8 fvprc 6883 . . 3 𝑋 ∈ V → (𝐹𝑋) = ∅)
9 fvprc 6883 . . . . 5 𝑋 ∈ V → (𝐺𝑋) = ∅)
109rabeqdv 3447 . . . 4 𝑋 ∈ V → {𝑦 ∈ (𝐺𝑋) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓})
11 rab0 4382 . . . 4 {𝑦 ∈ ∅ ∣ 𝜓} = ∅
1210, 11eqtr2di 2789 . . 3 𝑋 ∈ V → ∅ = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓})
138, 12eqtrd 2772 . 2 𝑋 ∈ V → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓})
147, 13pm2.61i 182 1 (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  c0 4322  cmpt 5231  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  uvtxval  28641
  Copyright terms: Public domain W3C validator