| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptrabfv | Structured version Visualization version GIF version | ||
| Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| fvmptrabfv.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑}) |
| fvmptrabfv.r | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| fvmptrabfv | ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 2 | fvmptrabfv.r | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rabeqbidv 3415 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑} = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
| 4 | fvmptrabfv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑}) | |
| 5 | fvex 6839 | . . . 4 ⊢ (𝐺‘𝑋) ∈ V | |
| 6 | 5 | rabex 5281 | . . 3 ⊢ {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} ∈ V |
| 7 | 3, 4, 6 | fvmpt 6934 | . 2 ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
| 8 | fvprc 6818 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 9 | fvprc 6818 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐺‘𝑋) = ∅) | |
| 10 | 9 | rabeqdv 3412 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓}) |
| 11 | rab0 4339 | . . . 4 ⊢ {𝑦 ∈ ∅ ∣ 𝜓} = ∅ | |
| 12 | 10, 11 | eqtr2di 2781 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
| 13 | 8, 12 | eqtrd 2764 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
| 14 | 7, 13 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ∅c0 4286 ↦ cmpt 5176 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: uvtxval 29350 |
| Copyright terms: Public domain | W3C validator |