Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptrabfv | Structured version Visualization version GIF version |
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022.) |
Ref | Expression |
---|---|
fvmptrabfv.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑}) |
fvmptrabfv.r | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
fvmptrabfv | ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
2 | fvmptrabfv.r | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rabeqbidv 3420 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑} = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
4 | fvmptrabfv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺‘𝑥) ∣ 𝜑}) | |
5 | fvex 6787 | . . . 4 ⊢ (𝐺‘𝑋) ∈ V | |
6 | 5 | rabex 5256 | . . 3 ⊢ {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} ∈ V |
7 | 3, 4, 6 | fvmpt 6875 | . 2 ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
8 | fvprc 6766 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
9 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (𝐺‘𝑋) = ∅) | |
10 | 9 | rabeqdv 3419 | . . . 4 ⊢ (¬ 𝑋 ∈ V → {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓}) |
11 | rab0 4316 | . . . 4 ⊢ {𝑦 ∈ ∅ ∣ 𝜓} = ∅ | |
12 | 10, 11 | eqtr2di 2795 | . . 3 ⊢ (¬ 𝑋 ∈ V → ∅ = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
13 | 8, 12 | eqtrd 2778 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓}) |
14 | 7, 13 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑋) ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∅c0 4256 ↦ cmpt 5157 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: uvtxval 27754 |
Copyright terms: Public domain | W3C validator |