![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmptrab | Structured version Visualization version GIF version |
Description: Value of a function mapping a set to a class abstraction restricting a class depending on the argument of the function. More general version of fvmptrabfv 7061, but relying on the fact that out-of-domain arguments evaluate to the empty set, which relies on set.mm's particular encoding. (Contributed by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
fvmptrab.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) |
fvmptrab.r | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
fvmptrab.s | ⊢ (𝑥 = 𝑋 → 𝑀 = 𝑁) |
fvmptrab.v | ⊢ (𝑋 ∈ 𝑉 → 𝑁 ∈ V) |
fvmptrab.n | ⊢ (𝑋 ∉ 𝑉 → 𝑁 = ∅) |
Ref | Expression |
---|---|
fvmptrab | ⊢ (𝐹‘𝑋) = {𝑦 ∈ 𝑁 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptrab.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑})) |
3 | fvmptrab.s | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑀 = 𝑁) | |
4 | fvmptrab.r | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | rabeqbidv 3462 | . . . 4 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ 𝑁 ∣ 𝜓}) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → {𝑦 ∈ 𝑀 ∣ 𝜑} = {𝑦 ∈ 𝑁 ∣ 𝜓}) |
7 | id 22 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑉) | |
8 | eqid 2740 | . . . 4 ⊢ {𝑦 ∈ 𝑁 ∣ 𝜓} = {𝑦 ∈ 𝑁 ∣ 𝜓} | |
9 | fvmptrab.v | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑁 ∈ V) | |
10 | 8, 9 | rabexd 5358 | . . 3 ⊢ (𝑋 ∈ 𝑉 → {𝑦 ∈ 𝑁 ∣ 𝜓} ∈ V) |
11 | 2, 6, 7, 10 | fvmptd 7036 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹‘𝑋) = {𝑦 ∈ 𝑁 ∣ 𝜓}) |
12 | 1 | fvmptndm 7060 | . . 3 ⊢ (¬ 𝑋 ∈ 𝑉 → (𝐹‘𝑋) = ∅) |
13 | df-nel 3053 | . . . 4 ⊢ (𝑋 ∉ 𝑉 ↔ ¬ 𝑋 ∈ 𝑉) | |
14 | fvmptrab.n | . . . . 5 ⊢ (𝑋 ∉ 𝑉 → 𝑁 = ∅) | |
15 | rabeq 3458 | . . . . . 6 ⊢ (𝑁 = ∅ → {𝑦 ∈ 𝑁 ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓}) | |
16 | rab0 4409 | . . . . . 6 ⊢ {𝑦 ∈ ∅ ∣ 𝜓} = ∅ | |
17 | 15, 16 | eqtr2di 2797 | . . . . 5 ⊢ (𝑁 = ∅ → ∅ = {𝑦 ∈ 𝑁 ∣ 𝜓}) |
18 | 14, 17 | syl 17 | . . . 4 ⊢ (𝑋 ∉ 𝑉 → ∅ = {𝑦 ∈ 𝑁 ∣ 𝜓}) |
19 | 13, 18 | sylbir 235 | . . 3 ⊢ (¬ 𝑋 ∈ 𝑉 → ∅ = {𝑦 ∈ 𝑁 ∣ 𝜓}) |
20 | 12, 19 | eqtrd 2780 | . 2 ⊢ (¬ 𝑋 ∈ 𝑉 → (𝐹‘𝑋) = {𝑦 ∈ 𝑁 ∣ 𝜓}) |
21 | 11, 20 | pm2.61i 182 | 1 ⊢ (𝐹‘𝑋) = {𝑦 ∈ 𝑁 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 {crab 3443 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |