Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptrab Structured version   Visualization version   GIF version

Theorem fvmptrab 47416
Description: Value of a function mapping a set to a class abstraction restricting a class depending on the argument of the function. More general version of fvmptrabfv 6967, but relying on the fact that out-of-domain arguments evaluate to the empty set, which relies on set.mm's particular encoding. (Contributed by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
fvmptrab.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
fvmptrab.r (𝑥 = 𝑋 → (𝜑𝜓))
fvmptrab.s (𝑥 = 𝑋𝑀 = 𝑁)
fvmptrab.v (𝑋𝑉𝑁 ∈ V)
fvmptrab.n (𝑋𝑉𝑁 = ∅)
Assertion
Ref Expression
fvmptrab (𝐹𝑋) = {𝑦𝑁𝜓}
Distinct variable groups:   𝑦,𝑀   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑉   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐹(𝑥,𝑦)   𝑀(𝑥)   𝑉(𝑦)

Proof of Theorem fvmptrab
StepHypRef Expression
1 fvmptrab.f . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})
21a1i 11 . . 3 (𝑋𝑉𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑}))
3 fvmptrab.s . . . . 5 (𝑥 = 𝑋𝑀 = 𝑁)
4 fvmptrab.r . . . . 5 (𝑥 = 𝑋 → (𝜑𝜓))
53, 4rabeqbidv 3414 . . . 4 (𝑥 = 𝑋 → {𝑦𝑀𝜑} = {𝑦𝑁𝜓})
65adantl 481 . . 3 ((𝑋𝑉𝑥 = 𝑋) → {𝑦𝑀𝜑} = {𝑦𝑁𝜓})
7 id 22 . . 3 (𝑋𝑉𝑋𝑉)
8 eqid 2733 . . . 4 {𝑦𝑁𝜓} = {𝑦𝑁𝜓}
9 fvmptrab.v . . . 4 (𝑋𝑉𝑁 ∈ V)
108, 9rabexd 5280 . . 3 (𝑋𝑉 → {𝑦𝑁𝜓} ∈ V)
112, 6, 7, 10fvmptd 6942 . 2 (𝑋𝑉 → (𝐹𝑋) = {𝑦𝑁𝜓})
121fvmptndm 6966 . . 3 𝑋𝑉 → (𝐹𝑋) = ∅)
13 df-nel 3034 . . . 4 (𝑋𝑉 ↔ ¬ 𝑋𝑉)
14 fvmptrab.n . . . . 5 (𝑋𝑉𝑁 = ∅)
15 rabeq 3410 . . . . . 6 (𝑁 = ∅ → {𝑦𝑁𝜓} = {𝑦 ∈ ∅ ∣ 𝜓})
16 rab0 4335 . . . . . 6 {𝑦 ∈ ∅ ∣ 𝜓} = ∅
1715, 16eqtr2di 2785 . . . . 5 (𝑁 = ∅ → ∅ = {𝑦𝑁𝜓})
1814, 17syl 17 . . . 4 (𝑋𝑉 → ∅ = {𝑦𝑁𝜓})
1913, 18sylbir 235 . . 3 𝑋𝑉 → ∅ = {𝑦𝑁𝜓})
2012, 19eqtrd 2768 . 2 𝑋𝑉 → (𝐹𝑋) = {𝑦𝑁𝜓})
2111, 20pm2.61i 182 1 (𝐹𝑋) = {𝑦𝑁𝜓}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2113  wnel 3033  {crab 3396  Vcvv 3437  c0 4282  cmpt 5174  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator