MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtx0 Structured version   Visualization version   GIF version

Theorem uvtx0 29429
Description: There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtx0 (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅)

Proof of Theorem uvtx0
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxval 29422 . 2 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
3 rabeq 3458 . . 3 (𝑉 = ∅ → {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
4 rab0 4409 . . 3 {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅
53, 4eqtrdi 2796 . 2 (𝑉 = ∅ → {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅)
62, 5eqtrid 2792 1 (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  c0 4352  {csn 4648  cfv 6573  (class class class)co 7448  Vtxcvtx 29031   NeighbVtx cnbgr 29367  UnivVtxcuvtx 29420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-uvtx 29421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator