| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvtx0 | Structured version Visualization version GIF version | ||
| Description: There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
| Ref | Expression |
|---|---|
| uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| uvtx0 | ⊢ (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | uvtxval 29366 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} |
| 3 | rabeq 3430 | . . 3 ⊢ (𝑉 = ∅ → {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}) | |
| 4 | rab0 4361 | . . 3 ⊢ {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅ | |
| 5 | 3, 4 | eqtrdi 2786 | . 2 ⊢ (𝑉 = ∅ → {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅) |
| 6 | 2, 5 | eqtrid 2782 | 1 ⊢ (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ∖ cdif 3923 ∅c0 4308 {csn 4601 ‘cfv 6531 (class class class)co 7405 Vtxcvtx 28975 NeighbVtx cnbgr 29311 UnivVtxcuvtx 29364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-uvtx 29365 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |