MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdmdprd Structured version   Visualization version   GIF version

Theorem subgdmdprd 20078
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
subgdprd.1 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgdmdprd (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))

Proof of Theorem subgdmdprd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 20041 . . . 4 Rel dom DProd
21brrelex2i 5757 . . 3 (𝐻dom DProd 𝑆𝑆 ∈ V)
32a1i 11 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆𝑆 ∈ V))
41brrelex2i 5757 . . . 4 (𝐺dom DProd 𝑆𝑆 ∈ V)
54adantr 480 . . 3 ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V)
65a1i 11 . 2 (𝐴 ∈ (SubGrp‘𝐺) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V))
7 ffvelcdm 7115 . . . . . . . . . . . . . . . 16 ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ 𝑥 ∈ dom 𝑆) → (𝑆𝑥) ∈ (SubGrp‘𝐻))
87ad2ant2lr 747 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ∈ (SubGrp‘𝐻))
9 eqid 2740 . . . . . . . . . . . . . . . 16 (Base‘𝐻) = (Base‘𝐻)
109subgss 19167 . . . . . . . . . . . . . . 15 ((𝑆𝑥) ∈ (SubGrp‘𝐻) → (𝑆𝑥) ⊆ (Base‘𝐻))
118, 10syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ⊆ (Base‘𝐻))
12 subgdprd.1 . . . . . . . . . . . . . . . 16 𝐻 = (𝐺s 𝐴)
1312subgbas 19170 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1413ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 = (Base‘𝐻))
1511, 14sseqtrrd 4050 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ⊆ 𝐴)
1615biantrud 531 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴)))
17 simpll 766 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 ∈ (SubGrp‘𝐺))
18 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑆:dom 𝑆⟶(SubGrp‘𝐻))
19 eldifi 4154 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (dom 𝑆 ∖ {𝑥}) → 𝑦 ∈ dom 𝑆)
2019ad2antll 728 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑦 ∈ dom 𝑆)
2118, 20ffvelcdmd 7119 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ∈ (SubGrp‘𝐻))
229subgss 19167 . . . . . . . . . . . . . . . . 17 ((𝑆𝑦) ∈ (SubGrp‘𝐻) → (𝑆𝑦) ⊆ (Base‘𝐻))
2321, 22syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ⊆ (Base‘𝐻))
2423, 14sseqtrrd 4050 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ⊆ 𝐴)
25 eqid 2740 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
26 eqid 2740 . . . . . . . . . . . . . . . 16 (Cntz‘𝐻) = (Cntz‘𝐻)
2712, 25, 26resscntz 19373 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑦) ⊆ 𝐴) → ((Cntz‘𝐻)‘(𝑆𝑦)) = (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
2817, 24, 27syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((Cntz‘𝐻)‘(𝑆𝑦)) = (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
2928sseq2d 4041 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴)))
30 ssin 4260 . . . . . . . . . . . . 13 (((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴) ↔ (𝑆𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
3129, 30bitr4di 289 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ↔ ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴)))
3216, 31bitr4d 282 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
3332anassrs 467 . . . . . . . . . 10 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥})) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
3433ralbidva 3182 . . . . . . . . 9 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ ∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
35 subgrcl 19171 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3635ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐺 ∈ Grp)
37 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
3837subgacs 19201 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
39 acsmre 17710 . . . . . . . . . . . . . 14 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4036, 38, 393syl 18 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4112subggrp 19169 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
4241ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐻 ∈ Grp)
439subgacs 19201 . . . . . . . . . . . . . . 15 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
44 acsmre 17710 . . . . . . . . . . . . . . 15 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
4542, 43, 443syl 18 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
46 eqid 2740 . . . . . . . . . . . . . 14 (mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻))
47 imassrn 6100 . . . . . . . . . . . . . . . . 17 (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ran 𝑆
48 frn 6754 . . . . . . . . . . . . . . . . . 18 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) → ran 𝑆 ⊆ (SubGrp‘𝐻))
4948ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ran 𝑆 ⊆ (SubGrp‘𝐻))
5047, 49sstrid 4020 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (SubGrp‘𝐻))
51 mresspw 17650 . . . . . . . . . . . . . . . . 17 ((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
5245, 51syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
5350, 52sstrd 4019 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻))
54 sspwuni 5123 . . . . . . . . . . . . . . 15 ((𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻) ↔ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻))
5553, 54sylib 218 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻))
5645, 46, 55mrcssidd 17683 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
5746mrccl 17669 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
5845, 55, 57syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
5912subsubg 19189 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
6059ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
6158, 60mpbid 232 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴))
6261simpld 494 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
63 eqid 2740 . . . . . . . . . . . . . 14 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
6463mrcsscl 17678 . . . . . . . . . . . . 13 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
6540, 56, 62, 64syl3anc 1371 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
6613ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 = (Base‘𝐻))
6755, 66sseqtrrd 4050 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴)
6837subgss 19167 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
6968ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ⊆ (Base‘𝐺))
7067, 69sstrd 4019 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺))
7140, 63, 70mrcssidd 17683 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
7263mrccl 17669 . . . . . . . . . . . . . . 15 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7340, 70, 72syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
74 simpll 766 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ∈ (SubGrp‘𝐺))
7563mrcsscl 17678 . . . . . . . . . . . . . . 15 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)
7640, 67, 74, 75syl3anc 1371 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)
7712subsubg 19189 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
7877ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
7973, 76, 78mpbir2and 712 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
8046mrcsscl 17678 . . . . . . . . . . . . 13 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8145, 71, 79, 80syl3anc 1371 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8265, 81eqssd 4026 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8382ineq2d 4241 . . . . . . . . . 10 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))))
84 eqid 2740 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
8512, 84subg0 19172 . . . . . . . . . . . 12 (𝐴 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
8685ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (0g𝐺) = (0g𝐻))
8786sneqd 4660 . . . . . . . . . 10 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → {(0g𝐺)} = {(0g𝐻)})
8883, 87eqeq12d 2756 . . . . . . . . 9 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)} ↔ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))
8934, 88anbi12d 631 . . . . . . . 8 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}) ↔ (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))
9089ralbidva 3182 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) → (∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}) ↔ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))
9190pm5.32da 578 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
9212subsubg 19189 . . . . . . . . . . . . 13 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴)))
93 elin 3992 . . . . . . . . . . . . . 14 (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴))
94 velpw 4627 . . . . . . . . . . . . . . 15 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
9594anbi2i 622 . . . . . . . . . . . . . 14 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴))
9693, 95bitri 275 . . . . . . . . . . . . 13 (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴))
9792, 96bitr4di 289 . . . . . . . . . . . 12 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ 𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)))
9897eqrdv 2738 . . . . . . . . . . 11 (𝐴 ∈ (SubGrp‘𝐺) → (SubGrp‘𝐻) = ((SubGrp‘𝐺) ∩ 𝒫 𝐴))
9998sseq2d 4041 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)))
100 ssin 4260 . . . . . . . . . 10 ((ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴))
10199, 100bitr4di 289 . . . . . . . . 9 (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
102101anbi2d 629 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴))))
103 df-f 6577 . . . . . . . 8 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)))
104 df-f 6577 . . . . . . . . . 10 (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)))
105104anbi1i 623 . . . . . . . . 9 ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴))
106 anass 468 . . . . . . . . 9 (((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
107105, 106bitri 275 . . . . . . . 8 ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
108102, 103, 1073bitr4g 314 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
109108anbi1d 630 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
11091, 109bitr3d 281 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
111110adantr 480 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
112 dmexg 7941 . . . . . 6 (𝑆 ∈ V → dom 𝑆 ∈ V)
113112adantl 481 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 ∈ V)
114 eqidd 2741 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 = dom 𝑆)
11541adantr 480 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐻 ∈ Grp)
116 eqid 2740 . . . . . . . 8 (0g𝐻) = (0g𝐻)
11726, 116, 46dmdprd 20042 . . . . . . 7 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
118 3anass 1095 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
119117, 118bitrdi 287 . . . . . 6 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))))
120119baibd 539 . . . . 5 (((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐻 ∈ Grp) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
121113, 114, 115, 120syl21anc 837 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
12235adantr 480 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐺 ∈ Grp)
12325, 84, 63dmdprd 20042 . . . . . . . . 9 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
124 3anass 1095 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
125123, 124bitrdi 287 . . . . . . . 8 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))))
126125baibd 539 . . . . . . 7 (((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐺 ∈ Grp) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
127113, 114, 122, 126syl21anc 837 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
128127anbi1d 630 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
129 an32 645 . . . . 5 (((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
130128, 129bitrdi 287 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
131111, 121, 1303bitr4d 311 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
132131ex 412 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝑆 ∈ V → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))))
1333, 6, 132pm5.21ndd 379 1 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931   class class class wbr 5166  dom cdm 5700  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  0gc0g 17499  Moorecmre 17640  mrClscmrc 17641  ACScacs 17643  Grpcgrp 18973  SubGrpcsubg 19160  Cntzccntz 19355   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-subg 19163  df-cntz 19357  df-dprd 20039
This theorem is referenced by:  subgdprd  20079  ablfaclem3  20131
  Copyright terms: Public domain W3C validator