Step | Hyp | Ref
| Expression |
1 | | reldmdprd 19180 |
. . . 4
⊢ Rel dom
DProd |
2 | 1 | brrelex2i 5579 |
. . 3
⊢ (𝐻dom DProd 𝑆 → 𝑆 ∈ V) |
3 | 2 | a1i 11 |
. 2
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 → 𝑆 ∈ V)) |
4 | 1 | brrelex2i 5579 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
5 | 4 | adantr 485 |
. . 3
⊢ ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V) |
6 | 5 | a1i 11 |
. 2
⊢ (𝐴 ∈ (SubGrp‘𝐺) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V)) |
7 | | ffvelrn 6841 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ 𝑥 ∈ dom 𝑆) → (𝑆‘𝑥) ∈ (SubGrp‘𝐻)) |
8 | 7 | ad2ant2lr 748 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆‘𝑥) ∈ (SubGrp‘𝐻)) |
9 | | eqid 2759 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐻) =
(Base‘𝐻) |
10 | 9 | subgss 18340 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆‘𝑥) ∈ (SubGrp‘𝐻) → (𝑆‘𝑥) ⊆ (Base‘𝐻)) |
11 | 8, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆‘𝑥) ⊆ (Base‘𝐻)) |
12 | | subgdprd.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐻 = (𝐺 ↾s 𝐴) |
13 | 12 | subgbas 18343 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻)) |
14 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 = (Base‘𝐻)) |
15 | 11, 14 | sseqtrrd 3934 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆‘𝑥) ⊆ 𝐴) |
16 | 15 | biantrud 536 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ↔ ((𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ (𝑆‘𝑥) ⊆ 𝐴))) |
17 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 ∈ (SubGrp‘𝐺)) |
18 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) |
19 | | eldifi 4033 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (dom 𝑆 ∖ {𝑥}) → 𝑦 ∈ dom 𝑆) |
20 | 19 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑦 ∈ dom 𝑆) |
21 | 18, 20 | ffvelrnd 6844 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆‘𝑦) ∈ (SubGrp‘𝐻)) |
22 | 9 | subgss 18340 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆‘𝑦) ∈ (SubGrp‘𝐻) → (𝑆‘𝑦) ⊆ (Base‘𝐻)) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆‘𝑦) ⊆ (Base‘𝐻)) |
24 | 23, 14 | sseqtrrd 3934 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆‘𝑦) ⊆ 𝐴) |
25 | | eqid 2759 |
. . . . . . . . . . . . . . . 16
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
26 | | eqid 2759 |
. . . . . . . . . . . . . . . 16
⊢
(Cntz‘𝐻) =
(Cntz‘𝐻) |
27 | 12, 25, 26 | resscntz 18522 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑆‘𝑦) ⊆ 𝐴) → ((Cntz‘𝐻)‘(𝑆‘𝑦)) = (((Cntz‘𝐺)‘(𝑆‘𝑦)) ∩ 𝐴)) |
28 | 17, 24, 27 | syl2anc 588 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((Cntz‘𝐻)‘(𝑆‘𝑦)) = (((Cntz‘𝐺)‘(𝑆‘𝑦)) ∩ 𝐴)) |
29 | 28 | sseq2d 3925 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ↔ (𝑆‘𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆‘𝑦)) ∩ 𝐴))) |
30 | | ssin 4136 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ (𝑆‘𝑥) ⊆ 𝐴) ↔ (𝑆‘𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆‘𝑦)) ∩ 𝐴)) |
31 | 29, 30 | bitr4di 293 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ↔ ((𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ (𝑆‘𝑥) ⊆ 𝐴))) |
32 | 16, 31 | bitr4d 285 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆 ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ↔ (𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)))) |
33 | 32 | anassrs 472 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥})) → ((𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ↔ (𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)))) |
34 | 33 | ralbidva 3126 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ↔ ∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)))) |
35 | | subgrcl 18344 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
36 | 35 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐺 ∈ Grp) |
37 | | eqid 2759 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐺) =
(Base‘𝐺) |
38 | 37 | subgacs 18373 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
39 | | acsmre 16974 |
. . . . . . . . . . . . . 14
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
40 | 36, 38, 39 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
41 | 12 | subggrp 18342 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
42 | 41 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐻 ∈ Grp) |
43 | 9 | subgacs 18373 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ∈ Grp →
(SubGrp‘𝐻) ∈
(ACS‘(Base‘𝐻))) |
44 | | acsmre 16974 |
. . . . . . . . . . . . . . 15
⊢
((SubGrp‘𝐻)
∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻))) |
45 | 42, 43, 44 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻))) |
46 | | eqid 2759 |
. . . . . . . . . . . . . 14
⊢
(mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻)) |
47 | | imassrn 5913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ran 𝑆 |
48 | | frn 6505 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) → ran 𝑆 ⊆ (SubGrp‘𝐻)) |
49 | 48 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ran 𝑆 ⊆ (SubGrp‘𝐻)) |
50 | 47, 49 | sstrid 3904 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (SubGrp‘𝐻)) |
51 | | mresspw 16914 |
. . . . . . . . . . . . . . . . 17
⊢
((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻)) |
52 | 45, 51 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻)) |
53 | 50, 52 | sstrd 3903 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻)) |
54 | | sspwuni 4988 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻) ↔ ∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})) ⊆
(Base‘𝐻)) |
55 | 53, 54 | sylib 221 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻)) |
56 | 45, 46, 55 | mrcssidd 16947 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) |
57 | 46 | mrccl 16933 |
. . . . . . . . . . . . . . . 16
⊢
(((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) ∧ ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐻)) |
58 | 45, 55, 57 | syl2anc 588 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐻)) |
59 | 12 | subsubg 18362 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (SubGrp‘𝐺) →
(((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐺) ∧
((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴))) |
60 | 59 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐻) ↔
(((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ⊆ 𝐴))) |
61 | 58, 60 | mpbid 235 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐺) ∧
((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)) |
62 | 61 | simpld 499 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐺)) |
63 | | eqid 2759 |
. . . . . . . . . . . . . 14
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
64 | 63 | mrcsscl 16942 |
. . . . . . . . . . . . 13
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∧
((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ⊆
((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) |
65 | 40, 56, 62, 64 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ⊆
((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) |
66 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 = (Base‘𝐻)) |
67 | 55, 66 | sseqtrrd 3934 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴) |
68 | 37 | subgss 18340 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺)) |
69 | 68 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ⊆ (Base‘𝐺)) |
70 | 67, 69 | sstrd 3903 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
71 | 40, 63, 70 | mrcssidd 16947 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) |
72 | 63 | mrccl 16933 |
. . . . . . . . . . . . . . 15
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐺)) |
73 | 40, 70, 72 | syl2anc 588 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐺)) |
74 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ∈ (SubGrp‘𝐺)) |
75 | 63 | mrcsscl 16942 |
. . . . . . . . . . . . . . 15
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴 ∧ 𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ⊆ 𝐴) |
76 | 40, 67, 74, 75 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ⊆ 𝐴) |
77 | 12 | subsubg 18362 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (SubGrp‘𝐺) →
(((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐺) ∧
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴))) |
78 | 77 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐻) ↔
(((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ⊆ 𝐴))) |
79 | 73, 76, 78 | mpbir2and 713 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∈
(SubGrp‘𝐻)) |
80 | 46 | mrcsscl 16942 |
. . . . . . . . . . . . 13
⊢
(((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) ∧ ∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ∧
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ⊆
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) |
81 | 45, 71, 79, 80 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) ⊆
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) |
82 | 65, 81 | eqssd 3910 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))) =
((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) |
83 | 82 | ineq2d 4118 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) = ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥}))))) |
84 | | eqid 2759 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
85 | 12, 84 | subg0 18345 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (SubGrp‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
86 | 85 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (0g‘𝐺) = (0g‘𝐻)) |
87 | 86 | sneqd 4535 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → {(0g‘𝐺)} = {(0g‘𝐻)}) |
88 | 83, 87 | eqeq12d 2775 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)}
↔ ((𝑆‘𝑥) ∩
((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐻)})) |
89 | 34, 88 | anbi12d 634 |
. . . . . . . 8
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})
↔ (∀𝑦 ∈
(dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)}))) |
90 | 89 | ralbidva 3126 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) → (∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})
↔ ∀𝑥 ∈ dom
𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)}))) |
91 | 90 | pm5.32da 583 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)}))
↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)})))) |
92 | 12 | subsubg 18362 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ⊆ 𝐴))) |
93 | | elin 3875 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴)) |
94 | | velpw 4500 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
95 | 94 | anbi2i 626 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ⊆ 𝐴)) |
96 | 93, 95 | bitri 278 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ⊆ 𝐴)) |
97 | 92, 96 | bitr4di 293 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ 𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴))) |
98 | 97 | eqrdv 2757 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (SubGrp‘𝐻) = ((SubGrp‘𝐺) ∩ 𝒫 𝐴)) |
99 | 98 | sseq2d 3925 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴))) |
100 | | ssin 4136 |
. . . . . . . . . 10
⊢ ((ran
𝑆 ⊆
(SubGrp‘𝐺) ∧ ran
𝑆 ⊆ 𝒫 𝐴) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)) |
101 | 99, 100 | bitr4di 293 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴))) |
102 | 101 | anbi2d 632 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))) |
103 | | df-f 6340 |
. . . . . . . 8
⊢ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻))) |
104 | | df-f 6340 |
. . . . . . . . . 10
⊢ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺))) |
105 | 104 | anbi1i 627 |
. . . . . . . . 9
⊢ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴)) |
106 | | anass 473 |
. . . . . . . . 9
⊢ (((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴))) |
107 | 105, 106 | bitri 278 |
. . . . . . . 8
⊢ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴))) |
108 | 102, 103,
107 | 3bitr4g 318 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴))) |
109 | 108 | anbi1d 633 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)}))
↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})))) |
110 | 91, 109 | bitr3d 284 |
. . . . 5
⊢ (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)}))
↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})))) |
111 | 110 | adantr 485 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)}))
↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})))) |
112 | | dmexg 7614 |
. . . . . 6
⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) |
113 | 112 | adantl 486 |
. . . . 5
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 ∈ V) |
114 | | eqidd 2760 |
. . . . 5
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 = dom 𝑆) |
115 | 41 | adantr 485 |
. . . . 5
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐻 ∈ Grp) |
116 | | eqid 2759 |
. . . . . . . 8
⊢
(0g‘𝐻) = (0g‘𝐻) |
117 | 26, 116, 46 | dmdprd 19181 |
. . . . . . 7
⊢ ((dom
𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)})))) |
118 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)}))
↔ (𝐻 ∈ Grp ∧
(𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)})))) |
119 | 117, 118 | bitrdi 290 |
. . . . . 6
⊢ ((dom
𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)}))))) |
120 | 119 | baibd 544 |
. . . . 5
⊢ (((dom
𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐻 ∈ Grp) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)})))) |
121 | 113, 114,
115, 120 | syl21anc 837 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐻)})))) |
122 | 35 | adantr 485 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐺 ∈ Grp) |
123 | 25, 84, 63 | dmdprd 19181 |
. . . . . . . . 9
⊢ ((dom
𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})))) |
124 | | 3anass 1093 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)}))
↔ (𝐺 ∈ Grp ∧
(𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})))) |
125 | 123, 124 | bitrdi 290 |
. . . . . . . 8
⊢ ((dom
𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)}))))) |
126 | 125 | baibd 544 |
. . . . . . 7
⊢ (((dom
𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐺 ∈ Grp) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})))) |
127 | 113, 114,
122, 126 | syl21anc 837 |
. . . . . 6
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})))) |
128 | 127 | anbi1d 633 |
. . . . 5
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)}))
∧ ran 𝑆 ⊆
𝒫 𝐴))) |
129 | | an32 646 |
. . . . 5
⊢ (((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)}))
∧ ran 𝑆 ⊆
𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)}))) |
130 | 128, 129 | bitrdi 290 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (dom 𝑆 ∖
{𝑥})))) =
{(0g‘𝐺)})))) |
131 | 111, 121,
130 | 3bitr4d 315 |
. . 3
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))) |
132 | 131 | ex 417 |
. 2
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝑆 ∈ V → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))) |
133 | 3, 6, 132 | pm5.21ndd 385 |
1
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))) |