| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdf | Structured version Visualization version GIF version | ||
| Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdf | ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmdprd 19985 | . . . . . 6 ⊢ Rel dom DProd | |
| 2 | 1 | brrelex2i 5722 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
| 3 | 2 | dmexd 7907 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 4 | eqid 2734 | . . . 4 ⊢ dom 𝑆 = dom 𝑆 | |
| 5 | eqid 2734 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 6 | eqid 2734 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 7 | eqid 2734 | . . . . 5 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
| 8 | 5, 6, 7 | dmdprd 19986 | . . . 4 ⊢ ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
| 9 | 3, 4, 8 | sylancl 586 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
| 10 | 9 | ibi 267 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)}))) |
| 11 | 10 | simp2d 1143 | 1 ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 {csn 4606 ∪ cuni 4887 class class class wbr 5123 dom cdm 5665 “ cima 5668 ⟶wf 6537 ‘cfv 6541 0gc0g 17455 mrClscmrc 17597 Grpcgrp 18920 SubGrpcsubg 19107 Cntzccntz 19302 DProd cdprd 19981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-ixp 8920 df-dprd 19983 |
| This theorem is referenced by: dprdf2 19995 dprdsubg 20012 dprdspan 20015 subgdprd 20023 ablfaclem2 20074 ablfac2 20077 |
| Copyright terms: Public domain | W3C validator |