![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdf | Structured version Visualization version GIF version |
Description: The function ๐ is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdf | โข (๐บdom DProd ๐ โ ๐:dom ๐โถ(SubGrpโ๐บ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldmdprd 19910 | . . . . . 6 โข Rel dom DProd | |
2 | 1 | brrelex2i 5734 | . . . . 5 โข (๐บdom DProd ๐ โ ๐ โ V) |
3 | 2 | dmexd 7900 | . . . 4 โข (๐บdom DProd ๐ โ dom ๐ โ V) |
4 | eqid 2730 | . . . 4 โข dom ๐ = dom ๐ | |
5 | eqid 2730 | . . . . 5 โข (Cntzโ๐บ) = (Cntzโ๐บ) | |
6 | eqid 2730 | . . . . 5 โข (0gโ๐บ) = (0gโ๐บ) | |
7 | eqid 2730 | . . . . 5 โข (mrClsโ(SubGrpโ๐บ)) = (mrClsโ(SubGrpโ๐บ)) | |
8 | 5, 6, 7 | dmdprd 19911 | . . . 4 โข ((dom ๐ โ V โง dom ๐ = dom ๐) โ (๐บdom DProd ๐ โ (๐บ โ Grp โง ๐:dom ๐โถ(SubGrpโ๐บ) โง โ๐ฅ โ dom ๐(โ๐ฆ โ (dom ๐ โ {๐ฅ})(๐โ๐ฅ) โ ((Cntzโ๐บ)โ(๐โ๐ฆ)) โง ((๐โ๐ฅ) โฉ ((mrClsโ(SubGrpโ๐บ))โโช (๐ โ (dom ๐ โ {๐ฅ})))) = {(0gโ๐บ)})))) |
9 | 3, 4, 8 | sylancl 584 | . . 3 โข (๐บdom DProd ๐ โ (๐บdom DProd ๐ โ (๐บ โ Grp โง ๐:dom ๐โถ(SubGrpโ๐บ) โง โ๐ฅ โ dom ๐(โ๐ฆ โ (dom ๐ โ {๐ฅ})(๐โ๐ฅ) โ ((Cntzโ๐บ)โ(๐โ๐ฆ)) โง ((๐โ๐ฅ) โฉ ((mrClsโ(SubGrpโ๐บ))โโช (๐ โ (dom ๐ โ {๐ฅ})))) = {(0gโ๐บ)})))) |
10 | 9 | ibi 266 | . 2 โข (๐บdom DProd ๐ โ (๐บ โ Grp โง ๐:dom ๐โถ(SubGrpโ๐บ) โง โ๐ฅ โ dom ๐(โ๐ฆ โ (dom ๐ โ {๐ฅ})(๐โ๐ฅ) โ ((Cntzโ๐บ)โ(๐โ๐ฆ)) โง ((๐โ๐ฅ) โฉ ((mrClsโ(SubGrpโ๐บ))โโช (๐ โ (dom ๐ โ {๐ฅ})))) = {(0gโ๐บ)}))) |
11 | 10 | simp2d 1141 | 1 โข (๐บdom DProd ๐ โ ๐:dom ๐โถ(SubGrpโ๐บ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 394 โง w3a 1085 = wceq 1539 โ wcel 2104 โwral 3059 Vcvv 3472 โ cdif 3946 โฉ cin 3948 โ wss 3949 {csn 4629 โช cuni 4909 class class class wbr 5149 dom cdm 5677 โ cima 5680 โถwf 6540 โcfv 6544 0gc0g 17391 mrClscmrc 17533 Grpcgrp 18857 SubGrpcsubg 19038 Cntzccntz 19222 DProd cdprd 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-ixp 8896 df-dprd 19908 |
This theorem is referenced by: dprdf2 19920 dprdsubg 19937 dprdspan 19940 subgdprd 19948 ablfaclem2 19999 ablfac2 20002 |
Copyright terms: Public domain | W3C validator |