MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf Structured version   Visualization version   GIF version

Theorem dprdf 20050
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdf (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))

Proof of Theorem dprdf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 20041 . . . . . 6 Rel dom DProd
21brrelex2i 5750 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
32dmexd 7933 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
4 eqid 2737 . . . 4 dom 𝑆 = dom 𝑆
5 eqid 2737 . . . . 5 (Cntz‘𝐺) = (Cntz‘𝐺)
6 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
7 eqid 2737 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
85, 6, 7dmdprd 20042 . . . 4 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
93, 4, 8sylancl 586 . . 3 (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
109ibi 267 . 2 (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
1110simp2d 1144 1 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061  Vcvv 3481  cdif 3963  cin 3965  wss 3966  {csn 4634   cuni 4915   class class class wbr 5151  dom cdm 5693  cima 5696  wf 6565  cfv 6569  0gc0g 17495  mrClscmrc 17637  Grpcgrp 18973  SubGrpcsubg 19160  Cntzccntz 19355   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-ixp 8946  df-dprd 20039
This theorem is referenced by:  dprdf2  20051  dprdsubg  20068  dprdspan  20071  subgdprd  20079  ablfaclem2  20130  ablfac2  20133
  Copyright terms: Public domain W3C validator