MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdgrp Structured version   Visualization version   GIF version

Theorem dprdgrp 18720
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdgrp (𝐺dom DProd 𝑆𝐺 ∈ Grp)

Proof of Theorem dprdgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 18712 . . . . . 6 Rel dom DProd
21brrelex2i 5364 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
32dmexd 7333 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
4 eqid 2799 . . . 4 dom 𝑆 = dom 𝑆
5 eqid 2799 . . . . 5 (Cntz‘𝐺) = (Cntz‘𝐺)
6 eqid 2799 . . . . 5 (0g𝐺) = (0g𝐺)
7 eqid 2799 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
85, 6, 7dmdprd 18713 . . . 4 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
93, 4, 8sylancl 581 . . 3 (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
109ibi 259 . 2 (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
1110simp1d 1173 1 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  cdif 3766  cin 3768  wss 3769  {csn 4368   cuni 4628   class class class wbr 4843  dom cdm 5312  cima 5315  wf 6097  cfv 6101  0gc0g 16415  mrClscmrc 16558  Grpcgrp 17738  SubGrpcsubg 17901  Cntzccntz 18060   DProd cdprd 18708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-ixp 8149  df-dprd 18710
This theorem is referenced by:  dprdssv  18731  dprdfid  18732  dprdfinv  18734  dprdfadd  18735  dprdfsub  18736  dprdfeq0  18737  dprdf11  18738  dprdsubg  18739  dprdlub  18741  dprdspan  18742  dprdres  18743  dprdss  18744  dprdf1o  18747  dmdprdsplitlem  18752  dprdcntz2  18753  dprddisj2  18754  dprd2dlem1  18756  dprd2da  18757  dmdprdsplit2lem  18760  dmdprdsplit2  18761  dpjfval  18770  dpjidcl  18773
  Copyright terms: Public domain W3C validator