MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdgrp Structured version   Visualization version   GIF version

Theorem dprdgrp 19904
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdgrp (𝐺dom DProd 𝑆𝐺 ∈ Grp)

Proof of Theorem dprdgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 19896 . . . . . 6 Rel dom DProd
21brrelex2i 5680 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
32dmexd 7843 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
4 eqid 2729 . . . 4 dom 𝑆 = dom 𝑆
5 eqid 2729 . . . . 5 (Cntz‘𝐺) = (Cntz‘𝐺)
6 eqid 2729 . . . . 5 (0g𝐺) = (0g𝐺)
7 eqid 2729 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
85, 6, 7dmdprd 19897 . . . 4 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
93, 4, 8sylancl 586 . . 3 (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
109ibi 267 . 2 (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
1110simp1d 1142 1 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cdif 3902  cin 3904  wss 3905  {csn 4579   cuni 4861   class class class wbr 5095  dom cdm 5623  cima 5626  wf 6482  cfv 6486  0gc0g 17361  mrClscmrc 17503  Grpcgrp 18830  SubGrpcsubg 19017  Cntzccntz 19212   DProd cdprd 19892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-ixp 8832  df-dprd 19894
This theorem is referenced by:  dprdssv  19915  dprdfid  19916  dprdfinv  19918  dprdfadd  19919  dprdfsub  19920  dprdfeq0  19921  dprdf11  19922  dprdsubg  19923  dprdlub  19925  dprdspan  19926  dprdres  19927  dprdss  19928  dprdf1o  19931  dmdprdsplitlem  19936  dprdcntz2  19937  dprddisj2  19938  dprd2dlem1  19940  dprd2da  19941  dmdprdsplit2lem  19944  dmdprdsplit2  19945  dpjfval  19954  dpjidcl  19957
  Copyright terms: Public domain W3C validator