MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdgrp Structured version   Visualization version   GIF version

Theorem dprdgrp 19923
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdgrp (𝐺dom DProd 𝑆𝐺 ∈ Grp)

Proof of Theorem dprdgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 19915 . . . . . 6 Rel dom DProd
21brrelex2i 5678 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
32dmexd 7841 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
4 eqid 2733 . . . 4 dom 𝑆 = dom 𝑆
5 eqid 2733 . . . . 5 (Cntz‘𝐺) = (Cntz‘𝐺)
6 eqid 2733 . . . . 5 (0g𝐺) = (0g𝐺)
7 eqid 2733 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
85, 6, 7dmdprd 19916 . . . 4 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
93, 4, 8sylancl 586 . . 3 (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
109ibi 267 . 2 (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
1110simp1d 1142 1 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cdif 3895  cin 3897  wss 3898  {csn 4577   cuni 4860   class class class wbr 5095  dom cdm 5621  cima 5624  wf 6484  cfv 6488  0gc0g 17347  mrClscmrc 17489  Grpcgrp 18850  SubGrpcsubg 19037  Cntzccntz 19231   DProd cdprd 19911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-ixp 8830  df-dprd 19913
This theorem is referenced by:  dprdssv  19934  dprdfid  19935  dprdfinv  19937  dprdfadd  19938  dprdfsub  19939  dprdfeq0  19940  dprdf11  19941  dprdsubg  19942  dprdlub  19944  dprdspan  19945  dprdres  19946  dprdss  19947  dprdf1o  19950  dmdprdsplitlem  19955  dprdcntz2  19956  dprddisj2  19957  dprd2dlem1  19959  dprd2da  19960  dmdprdsplit2lem  19963  dmdprdsplit2  19964  dpjfval  19973  dpjidcl  19976
  Copyright terms: Public domain W3C validator