Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdgrp | Structured version Visualization version GIF version |
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdgrp | ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldmdprd 19515 | . . . . . 6 ⊢ Rel dom DProd | |
2 | 1 | brrelex2i 5635 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
3 | 2 | dmexd 7726 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
4 | eqid 2738 | . . . 4 ⊢ dom 𝑆 = dom 𝑆 | |
5 | eqid 2738 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
6 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
7 | eqid 2738 | . . . . 5 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
8 | 5, 6, 7 | dmdprd 19516 | . . . 4 ⊢ ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
9 | 3, 4, 8 | sylancl 585 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
10 | 9 | ibi 266 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)}))) |
11 | 10 | simp1d 1140 | 1 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 “ cima 5583 ⟶wf 6414 ‘cfv 6418 0gc0g 17067 mrClscmrc 17209 Grpcgrp 18492 SubGrpcsubg 18664 Cntzccntz 18836 DProd cdprd 19511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-ixp 8644 df-dprd 19513 |
This theorem is referenced by: dprdssv 19534 dprdfid 19535 dprdfinv 19537 dprdfadd 19538 dprdfsub 19539 dprdfeq0 19540 dprdf11 19541 dprdsubg 19542 dprdlub 19544 dprdspan 19545 dprdres 19546 dprdss 19547 dprdf1o 19550 dmdprdsplitlem 19555 dprdcntz2 19556 dprddisj2 19557 dprd2dlem1 19559 dprd2da 19560 dmdprdsplit2lem 19563 dmdprdsplit2 19564 dpjfval 19573 dpjidcl 19576 |
Copyright terms: Public domain | W3C validator |