| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdgrp | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdgrp | ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmdprd 19915 | . . . . . 6 ⊢ Rel dom DProd | |
| 2 | 1 | brrelex2i 5678 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
| 3 | 2 | dmexd 7841 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 4 | eqid 2733 | . . . 4 ⊢ dom 𝑆 = dom 𝑆 | |
| 5 | eqid 2733 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 6 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 7 | eqid 2733 | . . . . 5 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
| 8 | 5, 6, 7 | dmdprd 19916 | . . . 4 ⊢ ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
| 9 | 3, 4, 8 | sylancl 586 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
| 10 | 9 | ibi 267 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)}))) |
| 11 | 10 | simp1d 1142 | 1 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 {csn 4577 ∪ cuni 4860 class class class wbr 5095 dom cdm 5621 “ cima 5624 ⟶wf 6484 ‘cfv 6488 0gc0g 17347 mrClscmrc 17489 Grpcgrp 18850 SubGrpcsubg 19037 Cntzccntz 19231 DProd cdprd 19911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-ixp 8830 df-dprd 19913 |
| This theorem is referenced by: dprdssv 19934 dprdfid 19935 dprdfinv 19937 dprdfadd 19938 dprdfsub 19939 dprdfeq0 19940 dprdf11 19941 dprdsubg 19942 dprdlub 19944 dprdspan 19945 dprdres 19946 dprdss 19947 dprdf1o 19950 dmdprdsplitlem 19955 dprdcntz2 19956 dprddisj2 19957 dprd2dlem1 19959 dprd2da 19960 dmdprdsplit2lem 19963 dmdprdsplit2 19964 dpjfval 19973 dpjidcl 19976 |
| Copyright terms: Public domain | W3C validator |