| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdgrp | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdgrp | ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmdprd 19980 | . . . . . 6 ⊢ Rel dom DProd | |
| 2 | 1 | brrelex2i 5711 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
| 3 | 2 | dmexd 7899 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 4 | eqid 2735 | . . . 4 ⊢ dom 𝑆 = dom 𝑆 | |
| 5 | eqid 2735 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 7 | eqid 2735 | . . . . 5 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
| 8 | 5, 6, 7 | dmdprd 19981 | . . . 4 ⊢ ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
| 9 | 3, 4, 8 | sylancl 586 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
| 10 | 9 | ibi 267 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)}))) |
| 11 | 10 | simp1d 1142 | 1 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 {csn 4601 ∪ cuni 4883 class class class wbr 5119 dom cdm 5654 “ cima 5657 ⟶wf 6527 ‘cfv 6531 0gc0g 17453 mrClscmrc 17595 Grpcgrp 18916 SubGrpcsubg 19103 Cntzccntz 19298 DProd cdprd 19976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-ixp 8912 df-dprd 19978 |
| This theorem is referenced by: dprdssv 19999 dprdfid 20000 dprdfinv 20002 dprdfadd 20003 dprdfsub 20004 dprdfeq0 20005 dprdf11 20006 dprdsubg 20007 dprdlub 20009 dprdspan 20010 dprdres 20011 dprdss 20012 dprdf1o 20015 dmdprdsplitlem 20020 dprdcntz2 20021 dprddisj2 20022 dprd2dlem1 20024 dprd2da 20025 dmdprdsplit2lem 20028 dmdprdsplit2 20029 dpjfval 20038 dpjidcl 20041 |
| Copyright terms: Public domain | W3C validator |