![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdgrp | Structured version Visualization version GIF version |
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdgrp | ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldmdprd 19915 | . . . . . 6 ⊢ Rel dom DProd | |
2 | 1 | brrelex2i 5733 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
3 | 2 | dmexd 7900 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
4 | eqid 2731 | . . . 4 ⊢ dom 𝑆 = dom 𝑆 | |
5 | eqid 2731 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
6 | eqid 2731 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
7 | eqid 2731 | . . . . 5 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
8 | 5, 6, 7 | dmdprd 19916 | . . . 4 ⊢ ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
9 | 3, 4, 8 | sylancl 585 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)})))) |
10 | 9 | ibi 267 | . 2 ⊢ (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g‘𝐺)}))) |
11 | 10 | simp1d 1141 | 1 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 {csn 4628 ∪ cuni 4908 class class class wbr 5148 dom cdm 5676 “ cima 5679 ⟶wf 6539 ‘cfv 6543 0gc0g 17392 mrClscmrc 17534 Grpcgrp 18861 SubGrpcsubg 19043 Cntzccntz 19227 DProd cdprd 19911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-ixp 8898 df-dprd 19913 |
This theorem is referenced by: dprdssv 19934 dprdfid 19935 dprdfinv 19937 dprdfadd 19938 dprdfsub 19939 dprdfeq0 19940 dprdf11 19941 dprdsubg 19942 dprdlub 19944 dprdspan 19945 dprdres 19946 dprdss 19947 dprdf1o 19950 dmdprdsplitlem 19955 dprdcntz2 19956 dprddisj2 19957 dprd2dlem1 19959 dprd2da 19960 dmdprdsplit2lem 19963 dmdprdsplit2 19964 dpjfval 19973 dpjidcl 19976 |
Copyright terms: Public domain | W3C validator |