MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdgrp Structured version   Visualization version   GIF version

Theorem dprdgrp 19246
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdgrp (𝐺dom DProd 𝑆𝐺 ∈ Grp)

Proof of Theorem dprdgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 19238 . . . . . 6 Rel dom DProd
21brrelex2i 5580 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
32dmexd 7636 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
4 eqid 2738 . . . 4 dom 𝑆 = dom 𝑆
5 eqid 2738 . . . . 5 (Cntz‘𝐺) = (Cntz‘𝐺)
6 eqid 2738 . . . . 5 (0g𝐺) = (0g𝐺)
7 eqid 2738 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
85, 6, 7dmdprd 19239 . . . 4 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
93, 4, 8sylancl 589 . . 3 (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
109ibi 270 . 2 (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
1110simp1d 1143 1 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  cdif 3840  cin 3842  wss 3843  {csn 4516   cuni 4796   class class class wbr 5030  dom cdm 5525  cima 5528  wf 6335  cfv 6339  0gc0g 16816  mrClscmrc 16957  Grpcgrp 18219  SubGrpcsubg 18391  Cntzccntz 18563   DProd cdprd 19234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-ixp 8508  df-dprd 19236
This theorem is referenced by:  dprdssv  19257  dprdfid  19258  dprdfinv  19260  dprdfadd  19261  dprdfsub  19262  dprdfeq0  19263  dprdf11  19264  dprdsubg  19265  dprdlub  19267  dprdspan  19268  dprdres  19269  dprdss  19270  dprdf1o  19273  dmdprdsplitlem  19278  dprdcntz2  19279  dprddisj2  19280  dprd2dlem1  19282  dprd2da  19283  dmdprdsplit2lem  19286  dmdprdsplit2  19287  dpjfval  19296  dpjidcl  19299
  Copyright terms: Public domain W3C validator