MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdgrp Structured version   Visualization version   GIF version

Theorem dprdgrp 19120
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdgrp (𝐺dom DProd 𝑆𝐺 ∈ Grp)

Proof of Theorem dprdgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 19112 . . . . . 6 Rel dom DProd
21brrelex2i 5573 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
32dmexd 7596 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
4 eqid 2798 . . . 4 dom 𝑆 = dom 𝑆
5 eqid 2798 . . . . 5 (Cntz‘𝐺) = (Cntz‘𝐺)
6 eqid 2798 . . . . 5 (0g𝐺) = (0g𝐺)
7 eqid 2798 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
85, 6, 7dmdprd 19113 . . . 4 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
93, 4, 8sylancl 589 . . 3 (𝐺dom DProd 𝑆 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
109ibi 270 . 2 (𝐺dom DProd 𝑆 → (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
1110simp1d 1139 1 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cdif 3878  cin 3880  wss 3881  {csn 4525   cuni 4800   class class class wbr 5030  dom cdm 5519  cima 5522  wf 6320  cfv 6324  0gc0g 16705  mrClscmrc 16846  Grpcgrp 18095  SubGrpcsubg 18265  Cntzccntz 18437   DProd cdprd 19108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-ixp 8445  df-dprd 19110
This theorem is referenced by:  dprdssv  19131  dprdfid  19132  dprdfinv  19134  dprdfadd  19135  dprdfsub  19136  dprdfeq0  19137  dprdf11  19138  dprdsubg  19139  dprdlub  19141  dprdspan  19142  dprdres  19143  dprdss  19144  dprdf1o  19147  dmdprdsplitlem  19152  dprdcntz2  19153  dprddisj2  19154  dprd2dlem1  19156  dprd2da  19157  dmdprdsplit2lem  19160  dmdprdsplit2  19161  dpjfval  19170  dpjidcl  19173
  Copyright terms: Public domain W3C validator