MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjfval Structured version   Visualization version   GIF version

Theorem dpjfval 19925
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjfval.q 𝑄 = (proj1𝐺)
Assertion
Ref Expression
dpjfval (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
Distinct variable groups:   𝑖,𝐺   𝜑,𝑖   𝑖,𝐼   𝑆,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑄(𝑖)

Proof of Theorem dpjfval
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjfval.p . 2 𝑃 = (𝐺dProj𝑆)
2 df-dpj 19866 . . . 4 dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))))
32a1i 11 . . 3 (𝜑 → dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))))))
4 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → 𝑠 = 𝑆)
54dmeqd 5906 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑠 = dom 𝑆)
6 dpjfval.2 . . . . . 6 (𝜑 → dom 𝑆 = 𝐼)
76adantr 482 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑆 = 𝐼)
85, 7eqtrd 2773 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑠 = 𝐼)
9 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → 𝑔 = 𝐺)
109fveq2d 6896 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (proj1𝑔) = (proj1𝐺))
11 dpjfval.q . . . . . 6 𝑄 = (proj1𝐺)
1210, 11eqtr4di 2791 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (proj1𝑔) = 𝑄)
134fveq1d 6894 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑠𝑖) = (𝑆𝑖))
148difeq1d 4122 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (dom 𝑠 ∖ {𝑖}) = (𝐼 ∖ {𝑖}))
154, 14reseq12d 5983 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑠 ↾ (dom 𝑠 ∖ {𝑖})) = (𝑆 ↾ (𝐼 ∖ {𝑖})))
169, 15oveq12d 7427 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))
1712, 13, 16oveq123d 7430 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))) = ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖})))))
188, 17mpteq12dv 5240 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))) = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
19 simpr 486 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
2019sneqd 4641 . . . 4 ((𝜑𝑔 = 𝐺) → {𝑔} = {𝐺})
2120imaeq2d 6060 . . 3 ((𝜑𝑔 = 𝐺) → (dom DProd “ {𝑔}) = (dom DProd “ {𝐺}))
22 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
23 dprdgrp 19875 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
2422, 23syl 17 . . 3 (𝜑𝐺 ∈ Grp)
25 reldmdprd 19867 . . . . 5 Rel dom DProd
26 elrelimasn 6085 . . . . 5 (Rel dom DProd → (𝑆 ∈ (dom DProd “ {𝐺}) ↔ 𝐺dom DProd 𝑆))
2725, 26ax-mp 5 . . . 4 (𝑆 ∈ (dom DProd “ {𝐺}) ↔ 𝐺dom DProd 𝑆)
2822, 27sylibr 233 . . 3 (𝜑𝑆 ∈ (dom DProd “ {𝐺}))
2922, 6dprddomcld 19871 . . . 4 (𝜑𝐼 ∈ V)
3029mptexd 7226 . . 3 (𝜑 → (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))) ∈ V)
313, 18, 21, 24, 28, 30ovmpodx 7559 . 2 (𝜑 → (𝐺dProj𝑆) = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
321, 31eqtrid 2785 1 (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cdif 3946  {csn 4629   class class class wbr 5149  cmpt 5232  dom cdm 5677  cres 5679  cima 5680  Rel wrel 5682  cfv 6544  (class class class)co 7409  cmpo 7411  Grpcgrp 18819  proj1cpj1 19503   DProd cdprd 19863  dProjcdpj 19864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-ixp 8892  df-dprd 19865  df-dpj 19866
This theorem is referenced by:  dpjval  19926
  Copyright terms: Public domain W3C validator