MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjfval Structured version   Visualization version   GIF version

Theorem dpjfval 19975
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjfval.q 𝑄 = (proj1𝐺)
Assertion
Ref Expression
dpjfval (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
Distinct variable groups:   𝑖,𝐺   𝜑,𝑖   𝑖,𝐼   𝑆,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑄(𝑖)

Proof of Theorem dpjfval
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjfval.p . 2 𝑃 = (𝐺dProj𝑆)
2 df-dpj 19916 . . . 4 dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))))
32a1i 11 . . 3 (𝜑 → dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))))))
4 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → 𝑠 = 𝑆)
54dmeqd 5850 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑠 = dom 𝑆)
6 dpjfval.2 . . . . . 6 (𝜑 → dom 𝑆 = 𝐼)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑆 = 𝐼)
85, 7eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑠 = 𝐼)
9 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → 𝑔 = 𝐺)
109fveq2d 6832 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (proj1𝑔) = (proj1𝐺))
11 dpjfval.q . . . . . 6 𝑄 = (proj1𝐺)
1210, 11eqtr4di 2784 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (proj1𝑔) = 𝑄)
134fveq1d 6830 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑠𝑖) = (𝑆𝑖))
148difeq1d 4074 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (dom 𝑠 ∖ {𝑖}) = (𝐼 ∖ {𝑖}))
154, 14reseq12d 5934 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑠 ↾ (dom 𝑠 ∖ {𝑖})) = (𝑆 ↾ (𝐼 ∖ {𝑖})))
169, 15oveq12d 7370 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))
1712, 13, 16oveq123d 7373 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))) = ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖})))))
188, 17mpteq12dv 5180 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))) = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
19 simpr 484 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
2019sneqd 4587 . . . 4 ((𝜑𝑔 = 𝐺) → {𝑔} = {𝐺})
2120imaeq2d 6014 . . 3 ((𝜑𝑔 = 𝐺) → (dom DProd “ {𝑔}) = (dom DProd “ {𝐺}))
22 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
23 dprdgrp 19925 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
2422, 23syl 17 . . 3 (𝜑𝐺 ∈ Grp)
25 reldmdprd 19917 . . . . 5 Rel dom DProd
26 elrelimasn 6040 . . . . 5 (Rel dom DProd → (𝑆 ∈ (dom DProd “ {𝐺}) ↔ 𝐺dom DProd 𝑆))
2725, 26ax-mp 5 . . . 4 (𝑆 ∈ (dom DProd “ {𝐺}) ↔ 𝐺dom DProd 𝑆)
2822, 27sylibr 234 . . 3 (𝜑𝑆 ∈ (dom DProd “ {𝐺}))
2922, 6dprddomcld 19921 . . . 4 (𝜑𝐼 ∈ V)
3029mptexd 7164 . . 3 (𝜑 → (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))) ∈ V)
313, 18, 21, 24, 28, 30ovmpodx 7503 . 2 (𝜑 → (𝐺dProj𝑆) = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
321, 31eqtrid 2778 1 (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  {csn 4575   class class class wbr 5093  cmpt 5174  dom cdm 5619  cres 5621  cima 5622  Rel wrel 5624  cfv 6487  (class class class)co 7352  cmpo 7354  Grpcgrp 18852  proj1cpj1 19553   DProd cdprd 19913  dProjcdpj 19914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-ixp 8828  df-dprd 19915  df-dpj 19916
This theorem is referenced by:  dpjval  19976
  Copyright terms: Public domain W3C validator