MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjfval Structured version   Visualization version   GIF version

Theorem dpjfval 19658
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjfval.q 𝑄 = (proj1𝐺)
Assertion
Ref Expression
dpjfval (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
Distinct variable groups:   𝑖,𝐺   𝜑,𝑖   𝑖,𝐼   𝑆,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑄(𝑖)

Proof of Theorem dpjfval
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjfval.p . 2 𝑃 = (𝐺dProj𝑆)
2 df-dpj 19599 . . . 4 dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))))
32a1i 11 . . 3 (𝜑 → dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))))))
4 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → 𝑠 = 𝑆)
54dmeqd 5814 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑠 = dom 𝑆)
6 dpjfval.2 . . . . . 6 (𝜑 → dom 𝑆 = 𝐼)
76adantr 481 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑆 = 𝐼)
85, 7eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑠 = 𝐼)
9 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → 𝑔 = 𝐺)
109fveq2d 6778 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (proj1𝑔) = (proj1𝐺))
11 dpjfval.q . . . . . 6 𝑄 = (proj1𝐺)
1210, 11eqtr4di 2796 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (proj1𝑔) = 𝑄)
134fveq1d 6776 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑠𝑖) = (𝑆𝑖))
148difeq1d 4056 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (dom 𝑠 ∖ {𝑖}) = (𝐼 ∖ {𝑖}))
154, 14reseq12d 5892 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑠 ↾ (dom 𝑠 ∖ {𝑖})) = (𝑆 ↾ (𝐼 ∖ {𝑖})))
169, 15oveq12d 7293 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))
1712, 13, 16oveq123d 7296 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))) = ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖})))))
188, 17mpteq12dv 5165 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))) = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
19 simpr 485 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
2019sneqd 4573 . . . 4 ((𝜑𝑔 = 𝐺) → {𝑔} = {𝐺})
2120imaeq2d 5969 . . 3 ((𝜑𝑔 = 𝐺) → (dom DProd “ {𝑔}) = (dom DProd “ {𝐺}))
22 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
23 dprdgrp 19608 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
2422, 23syl 17 . . 3 (𝜑𝐺 ∈ Grp)
25 reldmdprd 19600 . . . . 5 Rel dom DProd
26 elrelimasn 5993 . . . . 5 (Rel dom DProd → (𝑆 ∈ (dom DProd “ {𝐺}) ↔ 𝐺dom DProd 𝑆))
2725, 26ax-mp 5 . . . 4 (𝑆 ∈ (dom DProd “ {𝐺}) ↔ 𝐺dom DProd 𝑆)
2822, 27sylibr 233 . . 3 (𝜑𝑆 ∈ (dom DProd “ {𝐺}))
2922, 6dprddomcld 19604 . . . 4 (𝜑𝐼 ∈ V)
3029mptexd 7100 . . 3 (𝜑 → (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))) ∈ V)
313, 18, 21, 24, 28, 30ovmpodx 7424 . 2 (𝜑 → (𝐺dProj𝑆) = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
321, 31eqtrid 2790 1 (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  {csn 4561   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  cima 5592  Rel wrel 5594  cfv 6433  (class class class)co 7275  cmpo 7277  Grpcgrp 18577  proj1cpj1 19240   DProd cdprd 19596  dProjcdpj 19597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-ixp 8686  df-dprd 19598  df-dpj 19599
This theorem is referenced by:  dpjval  19659
  Copyright terms: Public domain W3C validator