MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdssv Structured version   Visualization version   GIF version

Theorem dprdssv 19955
Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprdssv.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
dprdssv (𝐺 DProd 𝑆) ⊆ 𝐵

Proof of Theorem dprdssv
Dummy variables 𝑥 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 dom 𝑆 = dom 𝑆
2 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
3 eqid 2730 . . . . 5 {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} = {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}
42, 3eldprd 19943 . . . 4 (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓))))
51, 4ax-mp 5 . . 3 (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)))
6 dprdssv.b . . . . . . 7 𝐵 = (Base‘𝐺)
7 eqid 2730 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
8 dprdgrp 19944 . . . . . . . . 9 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
98grpmndd 18885 . . . . . . . 8 (𝐺dom DProd 𝑆𝐺 ∈ Mnd)
109adantr 480 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝐺 ∈ Mnd)
11 reldmdprd 19936 . . . . . . . . . 10 Rel dom DProd
1211brrelex2i 5698 . . . . . . . . 9 (𝐺dom DProd 𝑆𝑆 ∈ V)
1312dmexd 7882 . . . . . . . 8 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
1413adantr 480 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → dom 𝑆 ∈ V)
15 simpl 482 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝐺dom DProd 𝑆)
16 eqidd 2731 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → dom 𝑆 = dom 𝑆)
17 simpr 484 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
183, 15, 16, 17, 6dprdff 19951 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓:dom 𝑆𝐵)
193, 15, 16, 17, 7dprdfcntz 19954 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
203, 15, 16, 17dprdffsupp 19953 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓 finSupp (0g𝐺))
216, 2, 7, 10, 14, 18, 19, 20gsumzcl 19848 . . . . . 6 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → (𝐺 Σg 𝑓) ∈ 𝐵)
22 eleq1 2817 . . . . . 6 (𝑥 = (𝐺 Σg 𝑓) → (𝑥𝐵 ↔ (𝐺 Σg 𝑓) ∈ 𝐵))
2321, 22syl5ibrcom 247 . . . . 5 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → (𝑥 = (𝐺 Σg 𝑓) → 𝑥𝐵))
2423rexlimdva 3135 . . . 4 (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) → 𝑥𝐵))
2524imp 406 . . 3 ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)) → 𝑥𝐵)
265, 25sylbi 217 . 2 (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥𝐵)
2726ssriv 3953 1 (𝐺 DProd 𝑆) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  wss 3917   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  Xcixp 8873   finSupp cfsupp 9319  Basecbs 17186  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  Cntzccntz 19254   DProd cdprd 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-subg 19062  df-cntz 19256  df-dprd 19934
This theorem is referenced by:  dprdfsub  19960  dprdf11  19962  dprdsubg  19963  dprdspan  19966  dprdcntz2  19977  dprd2da  19981  dmdprdsplit2lem  19984  ablfac1c  20010  ablfac1eulem  20011  ablfac1eu  20012
  Copyright terms: Public domain W3C validator