Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdssv | Structured version Visualization version GIF version |
Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdssv.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
dprdssv | ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ dom 𝑆 = dom 𝑆 | |
2 | eqid 2736 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | eqid 2736 | . . . . 5 ⊢ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
4 | 2, 3 | eldprd 19652 | . . . 4 ⊢ (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓)))) |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓))) |
6 | dprdssv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
7 | eqid 2736 | . . . . . . 7 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
8 | dprdgrp 19653 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
9 | 8 | grpmndd 18634 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Mnd) |
10 | 9 | adantr 482 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺 ∈ Mnd) |
11 | reldmdprd 19645 | . . . . . . . . . 10 ⊢ Rel dom DProd | |
12 | 11 | brrelex2i 5655 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
13 | 12 | dmexd 7784 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
14 | 13 | adantr 482 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → dom 𝑆 ∈ V) |
15 | simpl 484 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺dom DProd 𝑆) | |
16 | eqidd 2737 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → dom 𝑆 = dom 𝑆) | |
17 | simpr 486 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) | |
18 | 3, 15, 16, 17, 6 | dprdff 19660 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓:dom 𝑆⟶𝐵) |
19 | 3, 15, 16, 17, 7 | dprdfcntz 19663 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) |
20 | 3, 15, 16, 17 | dprdffsupp 19662 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 finSupp (0g‘𝐺)) |
21 | 6, 2, 7, 10, 14, 18, 19, 20 | gsumzcl 19557 | . . . . . 6 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → (𝐺 Σg 𝑓) ∈ 𝐵) |
22 | eleq1 2824 | . . . . . 6 ⊢ (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ 𝐵 ↔ (𝐺 Σg 𝑓) ∈ 𝐵)) | |
23 | 21, 22 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → (𝑥 = (𝐺 Σg 𝑓) → 𝑥 ∈ 𝐵)) |
24 | 23 | rexlimdva 3149 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) → 𝑥 ∈ 𝐵)) |
25 | 24 | imp 408 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓)) → 𝑥 ∈ 𝐵) |
26 | 5, 25 | sylbi 216 | . 2 ⊢ (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥 ∈ 𝐵) |
27 | 26 | ssriv 3930 | 1 ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∃wrex 3071 {crab 3284 Vcvv 3437 ⊆ wss 3892 class class class wbr 5081 dom cdm 5600 ‘cfv 6458 (class class class)co 7307 Xcixp 8716 finSupp cfsupp 9172 Basecbs 16957 0gc0g 17195 Σg cgsu 17196 Mndcmnd 18430 Cntzccntz 18966 DProd cdprd 19641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-fzo 13429 df-seq 13768 df-hash 14091 df-0g 17197 df-gsum 17198 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-subg 18797 df-cntz 18968 df-dprd 19643 |
This theorem is referenced by: dprdfsub 19669 dprdf11 19671 dprdsubg 19672 dprdspan 19675 dprdcntz2 19686 dprd2da 19690 dmdprdsplit2lem 19693 ablfac1c 19719 ablfac1eulem 19720 ablfac1eu 19721 |
Copyright terms: Public domain | W3C validator |