MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdssv Structured version   Visualization version   GIF version

Theorem dprdssv 19915
Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprdssv.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
dprdssv (𝐺 DProd 𝑆) ⊆ 𝐵

Proof of Theorem dprdssv
Dummy variables 𝑥 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 dom 𝑆 = dom 𝑆
2 eqid 2729 . . . . 5 (0g𝐺) = (0g𝐺)
3 eqid 2729 . . . . 5 {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} = {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}
42, 3eldprd 19903 . . . 4 (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓))))
51, 4ax-mp 5 . . 3 (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)))
6 dprdssv.b . . . . . . 7 𝐵 = (Base‘𝐺)
7 eqid 2729 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
8 dprdgrp 19904 . . . . . . . . 9 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
98grpmndd 18843 . . . . . . . 8 (𝐺dom DProd 𝑆𝐺 ∈ Mnd)
109adantr 480 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝐺 ∈ Mnd)
11 reldmdprd 19896 . . . . . . . . . 10 Rel dom DProd
1211brrelex2i 5680 . . . . . . . . 9 (𝐺dom DProd 𝑆𝑆 ∈ V)
1312dmexd 7843 . . . . . . . 8 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
1413adantr 480 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → dom 𝑆 ∈ V)
15 simpl 482 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝐺dom DProd 𝑆)
16 eqidd 2730 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → dom 𝑆 = dom 𝑆)
17 simpr 484 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
183, 15, 16, 17, 6dprdff 19911 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓:dom 𝑆𝐵)
193, 15, 16, 17, 7dprdfcntz 19914 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
203, 15, 16, 17dprdffsupp 19913 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓 finSupp (0g𝐺))
216, 2, 7, 10, 14, 18, 19, 20gsumzcl 19808 . . . . . 6 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → (𝐺 Σg 𝑓) ∈ 𝐵)
22 eleq1 2816 . . . . . 6 (𝑥 = (𝐺 Σg 𝑓) → (𝑥𝐵 ↔ (𝐺 Σg 𝑓) ∈ 𝐵))
2321, 22syl5ibrcom 247 . . . . 5 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → (𝑥 = (𝐺 Σg 𝑓) → 𝑥𝐵))
2423rexlimdva 3130 . . . 4 (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) → 𝑥𝐵))
2524imp 406 . . 3 ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)) → 𝑥𝐵)
265, 25sylbi 217 . 2 (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥𝐵)
2726ssriv 3941 1 (𝐺 DProd 𝑆) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  Vcvv 3438  wss 3905   class class class wbr 5095  dom cdm 5623  cfv 6486  (class class class)co 7353  Xcixp 8831   finSupp cfsupp 9270  Basecbs 17138  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  Cntzccntz 19212   DProd cdprd 19892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-subg 19020  df-cntz 19214  df-dprd 19894
This theorem is referenced by:  dprdfsub  19920  dprdf11  19922  dprdsubg  19923  dprdspan  19926  dprdcntz2  19937  dprd2da  19941  dmdprdsplit2lem  19944  ablfac1c  19970  ablfac1eulem  19971  ablfac1eu  19972
  Copyright terms: Public domain W3C validator