| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdssv | Structured version Visualization version GIF version | ||
| Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdssv.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| dprdssv | ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ dom 𝑆 = dom 𝑆 | |
| 2 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | eqid 2729 | . . . . 5 ⊢ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
| 4 | 2, 3 | eldprd 19903 | . . . 4 ⊢ (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓)))) |
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓))) |
| 6 | dprdssv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 8 | dprdgrp 19904 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 9 | 8 | grpmndd 18843 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Mnd) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺 ∈ Mnd) |
| 11 | reldmdprd 19896 | . . . . . . . . . 10 ⊢ Rel dom DProd | |
| 12 | 11 | brrelex2i 5680 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
| 13 | 12 | dmexd 7843 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → dom 𝑆 ∈ V) |
| 15 | simpl 482 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺dom DProd 𝑆) | |
| 16 | eqidd 2730 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → dom 𝑆 = dom 𝑆) | |
| 17 | simpr 484 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) | |
| 18 | 3, 15, 16, 17, 6 | dprdff 19911 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓:dom 𝑆⟶𝐵) |
| 19 | 3, 15, 16, 17, 7 | dprdfcntz 19914 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) |
| 20 | 3, 15, 16, 17 | dprdffsupp 19913 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 finSupp (0g‘𝐺)) |
| 21 | 6, 2, 7, 10, 14, 18, 19, 20 | gsumzcl 19808 | . . . . . 6 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → (𝐺 Σg 𝑓) ∈ 𝐵) |
| 22 | eleq1 2816 | . . . . . 6 ⊢ (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ 𝐵 ↔ (𝐺 Σg 𝑓) ∈ 𝐵)) | |
| 23 | 21, 22 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → (𝑥 = (𝐺 Σg 𝑓) → 𝑥 ∈ 𝐵)) |
| 24 | 23 | rexlimdva 3130 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) → 𝑥 ∈ 𝐵)) |
| 25 | 24 | imp 406 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓)) → 𝑥 ∈ 𝐵) |
| 26 | 5, 25 | sylbi 217 | . 2 ⊢ (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥 ∈ 𝐵) |
| 27 | 26 | ssriv 3941 | 1 ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 Xcixp 8831 finSupp cfsupp 9270 Basecbs 17138 0gc0g 17361 Σg cgsu 17362 Mndcmnd 18626 Cntzccntz 19212 DProd cdprd 19892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-subg 19020 df-cntz 19214 df-dprd 19894 |
| This theorem is referenced by: dprdfsub 19920 dprdf11 19922 dprdsubg 19923 dprdspan 19926 dprdcntz2 19937 dprd2da 19941 dmdprdsplit2lem 19944 ablfac1c 19970 ablfac1eulem 19971 ablfac1eu 19972 |
| Copyright terms: Public domain | W3C validator |