MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdssv Structured version   Visualization version   GIF version

Theorem dprdssv 19664
Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprdssv.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
dprdssv (𝐺 DProd 𝑆) ⊆ 𝐵

Proof of Theorem dprdssv
Dummy variables 𝑥 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 dom 𝑆 = dom 𝑆
2 eqid 2736 . . . . 5 (0g𝐺) = (0g𝐺)
3 eqid 2736 . . . . 5 {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} = {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}
42, 3eldprd 19652 . . . 4 (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓))))
51, 4ax-mp 5 . . 3 (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)))
6 dprdssv.b . . . . . . 7 𝐵 = (Base‘𝐺)
7 eqid 2736 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
8 dprdgrp 19653 . . . . . . . . 9 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
98grpmndd 18634 . . . . . . . 8 (𝐺dom DProd 𝑆𝐺 ∈ Mnd)
109adantr 482 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝐺 ∈ Mnd)
11 reldmdprd 19645 . . . . . . . . . 10 Rel dom DProd
1211brrelex2i 5655 . . . . . . . . 9 (𝐺dom DProd 𝑆𝑆 ∈ V)
1312dmexd 7784 . . . . . . . 8 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
1413adantr 482 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → dom 𝑆 ∈ V)
15 simpl 484 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝐺dom DProd 𝑆)
16 eqidd 2737 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → dom 𝑆 = dom 𝑆)
17 simpr 486 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
183, 15, 16, 17, 6dprdff 19660 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓:dom 𝑆𝐵)
193, 15, 16, 17, 7dprdfcntz 19663 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
203, 15, 16, 17dprdffsupp 19662 . . . . . . 7 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → 𝑓 finSupp (0g𝐺))
216, 2, 7, 10, 14, 18, 19, 20gsumzcl 19557 . . . . . 6 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → (𝐺 Σg 𝑓) ∈ 𝐵)
22 eleq1 2824 . . . . . 6 (𝑥 = (𝐺 Σg 𝑓) → (𝑥𝐵 ↔ (𝐺 Σg 𝑓) ∈ 𝐵))
2321, 22syl5ibrcom 247 . . . . 5 ((𝐺dom DProd 𝑆𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}) → (𝑥 = (𝐺 Σg 𝑓) → 𝑥𝐵))
2423rexlimdva 3149 . . . 4 (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) → 𝑥𝐵))
2524imp 408 . . 3 ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)) → 𝑥𝐵)
265, 25sylbi 216 . 2 (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥𝐵)
2726ssriv 3930 1 (𝐺 DProd 𝑆) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1539  wcel 2104  wrex 3071  {crab 3284  Vcvv 3437  wss 3892   class class class wbr 5081  dom cdm 5600  cfv 6458  (class class class)co 7307  Xcixp 8716   finSupp cfsupp 9172  Basecbs 16957  0gc0g 17195   Σg cgsu 17196  Mndcmnd 18430  Cntzccntz 18966   DProd cdprd 19641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-fzo 13429  df-seq 13768  df-hash 14091  df-0g 17197  df-gsum 17198  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-grp 18625  df-subg 18797  df-cntz 18968  df-dprd 19643
This theorem is referenced by:  dprdfsub  19669  dprdf11  19671  dprdsubg  19672  dprdspan  19675  dprdcntz2  19686  dprd2da  19690  dmdprdsplit2lem  19693  ablfac1c  19719  ablfac1eulem  19720  ablfac1eu  19721
  Copyright terms: Public domain W3C validator