![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdssv | Structured version Visualization version GIF version |
Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdssv.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
dprdssv | ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 ⊢ dom 𝑆 = dom 𝑆 | |
2 | eqid 2726 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | eqid 2726 | . . . . 5 ⊢ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
4 | 2, 3 | eldprd 19998 | . . . 4 ⊢ (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓)))) |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓))) |
6 | dprdssv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
7 | eqid 2726 | . . . . . . 7 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
8 | dprdgrp 19999 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
9 | 8 | grpmndd 18934 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Mnd) |
10 | 9 | adantr 479 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺 ∈ Mnd) |
11 | reldmdprd 19991 | . . . . . . . . . 10 ⊢ Rel dom DProd | |
12 | 11 | brrelex2i 5730 | . . . . . . . . 9 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
13 | 12 | dmexd 7906 | . . . . . . . 8 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
14 | 13 | adantr 479 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → dom 𝑆 ∈ V) |
15 | simpl 481 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺dom DProd 𝑆) | |
16 | eqidd 2727 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → dom 𝑆 = dom 𝑆) | |
17 | simpr 483 | . . . . . . . 8 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) | |
18 | 3, 15, 16, 17, 6 | dprdff 20006 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓:dom 𝑆⟶𝐵) |
19 | 3, 15, 16, 17, 7 | dprdfcntz 20009 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) |
20 | 3, 15, 16, 17 | dprdffsupp 20008 | . . . . . . 7 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 finSupp (0g‘𝐺)) |
21 | 6, 2, 7, 10, 14, 18, 19, 20 | gsumzcl 19903 | . . . . . 6 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → (𝐺 Σg 𝑓) ∈ 𝐵) |
22 | eleq1 2814 | . . . . . 6 ⊢ (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ 𝐵 ↔ (𝐺 Σg 𝑓) ∈ 𝐵)) | |
23 | 21, 22 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝐺dom DProd 𝑆 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → (𝑥 = (𝐺 Σg 𝑓) → 𝑥 ∈ 𝐵)) |
24 | 23 | rexlimdva 3145 | . . . 4 ⊢ (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) → 𝑥 ∈ 𝐵)) |
25 | 24 | imp 405 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓)) → 𝑥 ∈ 𝐵) |
26 | 5, 25 | sylbi 216 | . 2 ⊢ (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥 ∈ 𝐵) |
27 | 26 | ssriv 3983 | 1 ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 {crab 3420 Vcvv 3463 ⊆ wss 3947 class class class wbr 5144 dom cdm 5673 ‘cfv 6544 (class class class)co 7414 Xcixp 8916 finSupp cfsupp 9396 Basecbs 17206 0gc0g 17447 Σg cgsu 17448 Mndcmnd 18720 Cntzccntz 19303 DProd cdprd 19987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9397 df-oi 9544 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-n0 12517 df-z 12603 df-uz 12867 df-fz 13531 df-fzo 13674 df-seq 14014 df-hash 14341 df-0g 17449 df-gsum 17450 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-grp 18924 df-subg 19111 df-cntz 19305 df-dprd 19989 |
This theorem is referenced by: dprdfsub 20015 dprdf11 20017 dprdsubg 20018 dprdspan 20021 dprdcntz2 20032 dprd2da 20036 dmdprdsplit2lem 20039 ablfac1c 20065 ablfac1eulem 20066 ablfac1eu 20067 |
Copyright terms: Public domain | W3C validator |