MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos2 Structured version   Visualization version   GIF version

Theorem tpostpos2 8203
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos2 ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)

Proof of Theorem tpostpos2
StepHypRef Expression
1 tpostpos 8202 . 2 tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))
2 relrelss 6234 . . . 4 ((Rel 𝐹 ∧ Rel dom 𝐹) ↔ 𝐹 ⊆ ((V × V) × V))
3 ssun1 4137 . . . . . 6 (V × V) ⊆ ((V × V) ∪ {∅})
4 xpss1 5650 . . . . . 6 ((V × V) ⊆ ((V × V) ∪ {∅}) → ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V))
53, 4ax-mp 5 . . . . 5 ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)
6 sstr 3952 . . . . 5 ((𝐹 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
75, 6mpan2 691 . . . 4 (𝐹 ⊆ ((V × V) × V) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
82, 7sylbi 217 . . 3 ((Rel 𝐹 ∧ Rel dom 𝐹) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
9 dfss2 3929 . . 3 (𝐹 ⊆ (((V × V) ∪ {∅}) × V) ↔ (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹)
108, 9sylib 218 . 2 ((Rel 𝐹 ∧ Rel dom 𝐹) → (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹)
111, 10eqtrid 2776 1 ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  Vcvv 3444  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585   × cxp 5629  dom cdm 5631  Rel wrel 5636  tpos ctpos 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-tpos 8182
This theorem is referenced by:  2oppchomf  17661  mattpostpos  22317  opprabs  33426  2oppf  49094  funcoppc4  49106  funcoppc3  49109  uptposlem  49159
  Copyright terms: Public domain W3C validator