![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpostpos2 | Structured version Visualization version GIF version |
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
tpostpos2 | ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpostpos 7528 | . 2 ⊢ tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V)) | |
2 | relrelss 5802 | . . . 4 ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) ↔ 𝐹 ⊆ ((V × V) × V)) | |
3 | ssun1 3927 | . . . . . 6 ⊢ (V × V) ⊆ ((V × V) ∪ {∅}) | |
4 | xpss1 5268 | . . . . . 6 ⊢ ((V × V) ⊆ ((V × V) ∪ {∅}) → ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V) |
6 | sstr 3760 | . . . . 5 ⊢ ((𝐹 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V)) | |
7 | 5, 6 | mpan2 671 | . . . 4 ⊢ (𝐹 ⊆ ((V × V) × V) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V)) |
8 | 2, 7 | sylbi 207 | . . 3 ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V)) |
9 | df-ss 3737 | . . 3 ⊢ (𝐹 ⊆ (((V × V) ∪ {∅}) × V) ↔ (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹) | |
10 | 8, 9 | sylib 208 | . 2 ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹) |
11 | 1, 10 | syl5eq 2817 | 1 ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 Vcvv 3351 ∪ cun 3721 ∩ cin 3722 ⊆ wss 3723 ∅c0 4063 {csn 4317 × cxp 5248 dom cdm 5250 Rel wrel 5255 tpos ctpos 7507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-fv 6038 df-tpos 7508 |
This theorem is referenced by: 2oppchomf 16591 mattpostpos 20478 |
Copyright terms: Public domain | W3C validator |