MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos2 Structured version   Visualization version   GIF version

Theorem tpostpos2 8288
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos2 ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)

Proof of Theorem tpostpos2
StepHypRef Expression
1 tpostpos 8287 . 2 tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))
2 relrelss 6304 . . . 4 ((Rel 𝐹 ∧ Rel dom 𝐹) ↔ 𝐹 ⊆ ((V × V) × V))
3 ssun1 4201 . . . . . 6 (V × V) ⊆ ((V × V) ∪ {∅})
4 xpss1 5719 . . . . . 6 ((V × V) ⊆ ((V × V) ∪ {∅}) → ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V))
53, 4ax-mp 5 . . . . 5 ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)
6 sstr 4017 . . . . 5 ((𝐹 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
75, 6mpan2 690 . . . 4 (𝐹 ⊆ ((V × V) × V) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
82, 7sylbi 217 . . 3 ((Rel 𝐹 ∧ Rel dom 𝐹) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
9 dfss2 3994 . . 3 (𝐹 ⊆ (((V × V) ∪ {∅}) × V) ↔ (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹)
108, 9sylib 218 . 2 ((Rel 𝐹 ∧ Rel dom 𝐹) → (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹)
111, 10eqtrid 2792 1 ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   × cxp 5698  dom cdm 5700  Rel wrel 5705  tpos ctpos 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-tpos 8267
This theorem is referenced by:  2oppchomf  17784  mattpostpos  22481  opprabs  33475
  Copyright terms: Public domain W3C validator