MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos2 Structured version   Visualization version   GIF version

Theorem tpostpos2 8187
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos2 ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)

Proof of Theorem tpostpos2
StepHypRef Expression
1 tpostpos 8186 . 2 tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))
2 relrelss 6225 . . . 4 ((Rel 𝐹 ∧ Rel dom 𝐹) ↔ 𝐹 ⊆ ((V × V) × V))
3 ssun1 4131 . . . . . 6 (V × V) ⊆ ((V × V) ∪ {∅})
4 xpss1 5642 . . . . . 6 ((V × V) ⊆ ((V × V) ∪ {∅}) → ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V))
53, 4ax-mp 5 . . . . 5 ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)
6 sstr 3946 . . . . 5 ((𝐹 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
75, 6mpan2 691 . . . 4 (𝐹 ⊆ ((V × V) × V) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
82, 7sylbi 217 . . 3 ((Rel 𝐹 ∧ Rel dom 𝐹) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V))
9 dfss2 3923 . . 3 (𝐹 ⊆ (((V × V) ∪ {∅}) × V) ↔ (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹)
108, 9sylib 218 . 2 ((Rel 𝐹 ∧ Rel dom 𝐹) → (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹)
111, 10eqtrid 2776 1 ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  Vcvv 3438  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   × cxp 5621  dom cdm 5623  Rel wrel 5628  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-tpos 8166
This theorem is referenced by:  2oppchomf  17649  mattpostpos  22358  opprabs  33438  2oppf  49137  funcoppc4  49149  funcoppc3  49152  uptposlem  49202
  Copyright terms: Public domain W3C validator