Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpostpos2 | Structured version Visualization version GIF version |
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
tpostpos2 | ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpostpos 8033 | . 2 ⊢ tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V)) | |
2 | relrelss 6165 | . . . 4 ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) ↔ 𝐹 ⊆ ((V × V) × V)) | |
3 | ssun1 4102 | . . . . . 6 ⊢ (V × V) ⊆ ((V × V) ∪ {∅}) | |
4 | xpss1 5599 | . . . . . 6 ⊢ ((V × V) ⊆ ((V × V) ∪ {∅}) → ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V) |
6 | sstr 3925 | . . . . 5 ⊢ ((𝐹 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (((V × V) ∪ {∅}) × V)) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V)) | |
7 | 5, 6 | mpan2 687 | . . . 4 ⊢ (𝐹 ⊆ ((V × V) × V) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V)) |
8 | 2, 7 | sylbi 216 | . . 3 ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → 𝐹 ⊆ (((V × V) ∪ {∅}) × V)) |
9 | df-ss 3900 | . . 3 ⊢ (𝐹 ⊆ (((V × V) ∪ {∅}) × V) ↔ (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹) | |
10 | 8, 9 | sylib 217 | . 2 ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → (𝐹 ∩ (((V × V) ∪ {∅}) × V)) = 𝐹) |
11 | 1, 10 | eqtrid 2790 | 1 ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 × cxp 5578 dom cdm 5580 Rel wrel 5585 tpos ctpos 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-tpos 8013 |
This theorem is referenced by: 2oppchomf 17352 mattpostpos 21511 |
Copyright terms: Public domain | W3C validator |