| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reltpos | Structured version Visualization version GIF version | ||
| Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| reltpos | ⊢ Rel tpos 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposssxp 8212 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 2 | relxp 5659 | . 2 ⊢ Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 3 | relss 5747 | . 2 ⊢ (tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹)) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel tpos 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 ⊆ wss 3917 ∅c0 4299 {csn 4592 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ran crn 5642 Rel wrel 5646 tpos ctpos 8207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-tpos 8208 |
| This theorem is referenced by: brtpos2 8214 relbrtpos 8219 dftpos2 8225 dftpos3 8226 tpostpos 8228 tposresg 48870 2oppf 49125 |
| Copyright terms: Public domain | W3C validator |