Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reltpos | Structured version Visualization version GIF version |
Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
reltpos | ⊢ Rel tpos 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposssxp 8116 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
2 | relxp 5638 | . 2 ⊢ Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
3 | relss 5723 | . 2 ⊢ (tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹)) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel tpos 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3896 ⊆ wss 3898 ∅c0 4269 {csn 4573 × cxp 5618 ◡ccnv 5619 dom cdm 5620 ran crn 5621 Rel wrel 5625 tpos ctpos 8111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-mpt 5176 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-tpos 8112 |
This theorem is referenced by: brtpos2 8118 relbrtpos 8123 dftpos2 8129 dftpos3 8130 tpostpos 8132 |
Copyright terms: Public domain | W3C validator |