| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reltpos | Structured version Visualization version GIF version | ||
| Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| reltpos | ⊢ Rel tpos 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposssxp 8186 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 2 | relxp 5649 | . 2 ⊢ Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 3 | relss 5736 | . 2 ⊢ (tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹)) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel tpos 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 ⊆ wss 3911 ∅c0 4292 {csn 4585 × cxp 5629 ◡ccnv 5630 dom cdm 5631 ran crn 5632 Rel wrel 5636 tpos ctpos 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-tpos 8182 |
| This theorem is referenced by: brtpos2 8188 relbrtpos 8193 dftpos2 8199 dftpos3 8200 tpostpos 8202 tposresg 48839 2oppf 49094 |
| Copyright terms: Public domain | W3C validator |