MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltpos Structured version   Visualization version   GIF version

Theorem reltpos 8213
Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reltpos Rel tpos 𝐹

Proof of Theorem reltpos
StepHypRef Expression
1 tposssxp 8212 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 relxp 5659 . 2 Rel ((dom 𝐹 ∪ {∅}) × ran 𝐹)
3 relss 5747 . 2 (tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹))
41, 2, 3mp2 9 1 Rel tpos 𝐹
Colors of variables: wff setvar class
Syntax hints:  cun 3915  wss 3917  c0 4299  {csn 4592   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  Rel wrel 5646  tpos ctpos 8207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-tpos 8208
This theorem is referenced by:  brtpos2  8214  relbrtpos  8219  dftpos2  8225  dftpos3  8226  tpostpos  8228  tposresg  48870  2oppf  49125
  Copyright terms: Public domain W3C validator