![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindfres | Structured version Visualization version GIF version |
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindfres | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coires1 6264 | . . 3 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ dom (𝐹 ↾ 𝑋)) | |
2 | resdmres 6232 | . . 3 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝑋)) = (𝐹 ↾ 𝑋) | |
3 | 1, 2 | eqtri 2761 | . 2 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ 𝑋) |
4 | f1oi 6872 | . . . . 5 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) | |
5 | f1of1 6833 | . . . . 5 ⊢ (( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) |
7 | resss 6007 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
8 | dmss 5903 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹 |
10 | f1ss 6794 | . . . 4 ⊢ ((( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) | |
11 | 6, 9, 10 | mp2an 691 | . . 3 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹 |
12 | f1lindf 21377 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) | |
13 | 11, 12 | mp3an3 1451 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) |
14 | 3, 13 | eqbrtrrid 5185 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3949 class class class wbr 5149 I cid 5574 dom cdm 5677 ↾ cres 5679 ∘ ccom 5681 –1-1→wf1 6541 –1-1-onto→wf1o 6543 LModclmod 20471 LIndF clindf 21359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-slot 17115 df-ndx 17127 df-base 17145 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-lmod 20473 df-lss 20543 df-lsp 20583 df-lindf 21361 |
This theorem is referenced by: lindsss 21379 |
Copyright terms: Public domain | W3C validator |