![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindfres | Structured version Visualization version GIF version |
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindfres | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coires1 6273 | . . 3 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ dom (𝐹 ↾ 𝑋)) | |
2 | resdmres 6241 | . . 3 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝑋)) = (𝐹 ↾ 𝑋) | |
3 | 1, 2 | eqtri 2756 | . 2 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ 𝑋) |
4 | f1oi 6882 | . . . . 5 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) | |
5 | f1of1 6843 | . . . . 5 ⊢ (( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) |
7 | resss 6011 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
8 | dmss 5909 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹 |
10 | f1ss 6804 | . . . 4 ⊢ ((( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) | |
11 | 6, 9, 10 | mp2an 690 | . . 3 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹 |
12 | f1lindf 21763 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) | |
13 | 11, 12 | mp3an3 1446 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) |
14 | 3, 13 | eqbrtrrid 5188 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3949 class class class wbr 5152 I cid 5579 dom cdm 5682 ↾ cres 5684 ∘ ccom 5686 –1-1→wf1 6550 –1-1-onto→wf1o 6552 LModclmod 20750 LIndF clindf 21745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-1cn 11204 ax-addcl 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-nn 12251 df-slot 17158 df-ndx 17170 df-base 17188 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-lmod 20752 df-lss 20823 df-lsp 20863 df-lindf 21747 |
This theorem is referenced by: lindsss 21765 |
Copyright terms: Public domain | W3C validator |