MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfres Structured version   Visualization version   GIF version

Theorem lindfres 20739
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfres ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)

Proof of Theorem lindfres
StepHypRef Expression
1 coires1 6108 . . 3 (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) = (𝐹 ↾ dom (𝐹𝑋))
2 resdmres 6075 . . 3 (𝐹 ↾ dom (𝐹𝑋)) = (𝐹𝑋)
31, 2eqtri 2759 . 2 (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) = (𝐹𝑋)
4 f1oi 6676 . . . . 5 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1-onto→dom (𝐹𝑋)
5 f1of1 6638 . . . . 5 (( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1-onto→dom (𝐹𝑋) → ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋))
64, 5ax-mp 5 . . . 4 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋)
7 resss 5861 . . . . 5 (𝐹𝑋) ⊆ 𝐹
8 dmss 5756 . . . . 5 ((𝐹𝑋) ⊆ 𝐹 → dom (𝐹𝑋) ⊆ dom 𝐹)
97, 8ax-mp 5 . . . 4 dom (𝐹𝑋) ⊆ dom 𝐹
10 f1ss 6599 . . . 4 ((( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋) ∧ dom (𝐹𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹)
116, 9, 10mp2an 692 . . 3 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹
12 f1lindf 20738 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) LIndF 𝑊)
1311, 12mp3an3 1452 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) LIndF 𝑊)
143, 13eqbrtrrid 5075 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  wss 3853   class class class wbr 5039   I cid 5439  dom cdm 5536  cres 5538  ccom 5540  1-1wf1 6355  1-1-ontowf1o 6357  LModclmod 19853   LIndF clindf 20720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-1cn 10752  ax-addcl 10754
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-nn 11796  df-ndx 16669  df-slot 16670  df-base 16672  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lindf 20722
This theorem is referenced by:  lindsss  20740
  Copyright terms: Public domain W3C validator