MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfres Structured version   Visualization version   GIF version

Theorem lindfres 21764
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfres ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)

Proof of Theorem lindfres
StepHypRef Expression
1 coires1 6219 . . 3 (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) = (𝐹 ↾ dom (𝐹𝑋))
2 resdmres 6186 . . 3 (𝐹 ↾ dom (𝐹𝑋)) = (𝐹𝑋)
31, 2eqtri 2756 . 2 (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) = (𝐹𝑋)
4 f1oi 6808 . . . . 5 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1-onto→dom (𝐹𝑋)
5 f1of1 6769 . . . . 5 (( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1-onto→dom (𝐹𝑋) → ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋))
64, 5ax-mp 5 . . . 4 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋)
7 resss 5956 . . . . 5 (𝐹𝑋) ⊆ 𝐹
8 dmss 5848 . . . . 5 ((𝐹𝑋) ⊆ 𝐹 → dom (𝐹𝑋) ⊆ dom 𝐹)
97, 8ax-mp 5 . . . 4 dom (𝐹𝑋) ⊆ dom 𝐹
10 f1ss 6731 . . . 4 ((( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋) ∧ dom (𝐹𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹)
116, 9, 10mp2an 692 . . 3 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹
12 f1lindf 21763 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) LIndF 𝑊)
1311, 12mp3an3 1452 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) LIndF 𝑊)
143, 13eqbrtrrid 5131 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wss 3898   class class class wbr 5095   I cid 5515  dom cdm 5621  cres 5623  ccom 5625  1-1wf1 6485  1-1-ontowf1o 6487  LModclmod 20797   LIndF clindf 21745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-1cn 11073  ax-addcl 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-nn 12135  df-slot 17097  df-ndx 17109  df-base 17125  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-lmod 20799  df-lss 20869  df-lsp 20909  df-lindf 21747
This theorem is referenced by:  lindsss  21765
  Copyright terms: Public domain W3C validator