MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfres Structured version   Visualization version   GIF version

Theorem lindfres 21796
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfres ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)

Proof of Theorem lindfres
StepHypRef Expression
1 coires1 6264 . . 3 (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) = (𝐹 ↾ dom (𝐹𝑋))
2 resdmres 6232 . . 3 (𝐹 ↾ dom (𝐹𝑋)) = (𝐹𝑋)
31, 2eqtri 2757 . 2 (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) = (𝐹𝑋)
4 f1oi 6865 . . . . 5 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1-onto→dom (𝐹𝑋)
5 f1of1 6826 . . . . 5 (( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1-onto→dom (𝐹𝑋) → ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋))
64, 5ax-mp 5 . . . 4 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋)
7 resss 5999 . . . . 5 (𝐹𝑋) ⊆ 𝐹
8 dmss 5893 . . . . 5 ((𝐹𝑋) ⊆ 𝐹 → dom (𝐹𝑋) ⊆ dom 𝐹)
97, 8ax-mp 5 . . . 4 dom (𝐹𝑋) ⊆ dom 𝐹
10 f1ss 6788 . . . 4 ((( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋) ∧ dom (𝐹𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹)
116, 9, 10mp2an 692 . . 3 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹
12 f1lindf 21795 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) LIndF 𝑊)
1311, 12mp3an3 1451 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) LIndF 𝑊)
143, 13eqbrtrrid 5159 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wss 3931   class class class wbr 5123   I cid 5557  dom cdm 5665  cres 5667  ccom 5669  1-1wf1 6537  1-1-ontowf1o 6539  LModclmod 20825   LIndF clindf 21777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-1cn 11194  ax-addcl 11196
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-om 7869  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-nn 12248  df-slot 17200  df-ndx 17212  df-base 17229  df-0g 17456  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-grp 18922  df-lmod 20827  df-lss 20897  df-lsp 20937  df-lindf 21779
This theorem is referenced by:  lindsss  21797
  Copyright terms: Public domain W3C validator