| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lindfres | Structured version Visualization version GIF version | ||
| Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lindfres | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coires1 6212 | . . 3 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ dom (𝐹 ↾ 𝑋)) | |
| 2 | resdmres 6179 | . . 3 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝑋)) = (𝐹 ↾ 𝑋) | |
| 3 | 1, 2 | eqtri 2754 | . 2 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ 𝑋) |
| 4 | f1oi 6801 | . . . . 5 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) | |
| 5 | f1of1 6762 | . . . . 5 ⊢ (( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) |
| 7 | resss 5950 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
| 8 | dmss 5842 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹 |
| 10 | f1ss 6724 | . . . 4 ⊢ ((( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) | |
| 11 | 6, 9, 10 | mp2an 692 | . . 3 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹 |
| 12 | f1lindf 21760 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) | |
| 13 | 11, 12 | mp3an3 1452 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) |
| 14 | 3, 13 | eqbrtrrid 5127 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 I cid 5510 dom cdm 5616 ↾ cres 5618 ∘ ccom 5620 –1-1→wf1 6478 –1-1-onto→wf1o 6480 LModclmod 20794 LIndF clindf 21742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-slot 17093 df-ndx 17105 df-base 17121 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lindf 21744 |
| This theorem is referenced by: lindsss 21762 |
| Copyright terms: Public domain | W3C validator |