MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfres Structured version   Visualization version   GIF version

Theorem lindfres 21738
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfres ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)

Proof of Theorem lindfres
StepHypRef Expression
1 coires1 6245 . . 3 (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) = (𝐹 ↾ dom (𝐹𝑋))
2 resdmres 6213 . . 3 (𝐹 ↾ dom (𝐹𝑋)) = (𝐹𝑋)
31, 2eqtri 2753 . 2 (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) = (𝐹𝑋)
4 f1oi 6845 . . . . 5 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1-onto→dom (𝐹𝑋)
5 f1of1 6806 . . . . 5 (( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1-onto→dom (𝐹𝑋) → ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋))
64, 5ax-mp 5 . . . 4 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋)
7 resss 5980 . . . . 5 (𝐹𝑋) ⊆ 𝐹
8 dmss 5874 . . . . 5 ((𝐹𝑋) ⊆ 𝐹 → dom (𝐹𝑋) ⊆ dom 𝐹)
97, 8ax-mp 5 . . . 4 dom (𝐹𝑋) ⊆ dom 𝐹
10 f1ss 6768 . . . 4 ((( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom (𝐹𝑋) ∧ dom (𝐹𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹)
116, 9, 10mp2an 692 . . 3 ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹
12 f1lindf 21737 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) LIndF 𝑊)
1311, 12mp3an3 1452 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹𝑋))) LIndF 𝑊)
143, 13eqbrtrrid 5151 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹𝑋) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3922   class class class wbr 5115   I cid 5540  dom cdm 5646  cres 5648  ccom 5650  1-1wf1 6516  1-1-ontowf1o 6518  LModclmod 20772   LIndF clindf 21719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-1cn 11144  ax-addcl 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-nn 12198  df-slot 17158  df-ndx 17170  df-base 17186  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lindf 21721
This theorem is referenced by:  lindsss  21739
  Copyright terms: Public domain W3C validator