![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindfres | Structured version Visualization version GIF version |
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindfres | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coires1 5872 | . . 3 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ dom (𝐹 ↾ 𝑋)) | |
2 | resdmres 5844 | . . 3 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝑋)) = (𝐹 ↾ 𝑋) | |
3 | 1, 2 | eqtri 2821 | . 2 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ 𝑋) |
4 | f1oi 6393 | . . . . 5 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) | |
5 | f1of1 6355 | . . . . 5 ⊢ (( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) |
7 | resss 5632 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
8 | dmss 5526 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹 |
10 | f1ss 6321 | . . . 4 ⊢ ((( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) | |
11 | 6, 9, 10 | mp2an 684 | . . 3 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹 |
12 | f1lindf 20486 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) | |
13 | 11, 12 | mp3an3 1575 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) |
14 | 3, 13 | syl5eqbrr 4879 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ⊆ wss 3769 class class class wbr 4843 I cid 5219 dom cdm 5312 ↾ cres 5314 ∘ ccom 5316 –1-1→wf1 6098 –1-1-onto→wf1o 6100 LModclmod 19181 LIndF clindf 20468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-slot 16188 df-base 16190 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-lmod 19183 df-lss 19251 df-lsp 19293 df-lindf 20470 |
This theorem is referenced by: lindsss 20488 |
Copyright terms: Public domain | W3C validator |