Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lindfres | Structured version Visualization version GIF version |
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindfres | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coires1 6168 | . . 3 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ dom (𝐹 ↾ 𝑋)) | |
2 | resdmres 6135 | . . 3 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝑋)) = (𝐹 ↾ 𝑋) | |
3 | 1, 2 | eqtri 2766 | . 2 ⊢ (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) = (𝐹 ↾ 𝑋) |
4 | f1oi 6754 | . . . . 5 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) | |
5 | f1of1 6715 | . . . . 5 ⊢ (( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1-onto→dom (𝐹 ↾ 𝑋) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) |
7 | resss 5916 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
8 | dmss 5811 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹 |
10 | f1ss 6676 | . . . 4 ⊢ ((( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom (𝐹 ↾ 𝑋) ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) | |
11 | 6, 9, 10 | mp2an 689 | . . 3 ⊢ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹 |
12 | f1lindf 21029 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ ( I ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–1-1→dom 𝐹) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) | |
13 | 11, 12 | mp3an3 1449 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ∘ ( I ↾ dom (𝐹 ↾ 𝑋))) LIndF 𝑊) |
14 | 3, 13 | eqbrtrrid 5110 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 I cid 5488 dom cdm 5589 ↾ cres 5591 ∘ ccom 5593 –1-1→wf1 6430 –1-1-onto→wf1o 6432 LModclmod 20123 LIndF clindf 21011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 df-base 16913 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lindf 21013 |
This theorem is referenced by: lindsss 21031 |
Copyright terms: Public domain | W3C validator |