MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacmp Structured version   Visualization version   GIF version

Theorem imacmp 23310
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
imacmp ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t (𝐹𝐴)) ∈ Comp)

Proof of Theorem imacmp
StepHypRef Expression
1 df-ima 5629 . . 3 (𝐹𝐴) = ran (𝐹𝐴)
21oveq2i 7357 . 2 (𝐾t (𝐹𝐴)) = (𝐾t ran (𝐹𝐴))
3 simpr 484 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) ∈ Comp)
4 simpl 482 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 inss2 4188 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
6 eqid 2731 . . . . . 6 𝐽 = 𝐽
76cnrest 23198 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐴 𝐽) ⊆ 𝐽) → (𝐹 ↾ (𝐴 𝐽)) ∈ ((𝐽t (𝐴 𝐽)) Cn 𝐾))
84, 5, 7sylancl 586 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹 ↾ (𝐴 𝐽)) ∈ ((𝐽t (𝐴 𝐽)) Cn 𝐾))
9 resdmres 6179 . . . . 5 (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴)
10 dmres 5961 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
11 eqid 2731 . . . . . . . . . 10 𝐾 = 𝐾
126, 11cnf 23159 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
13 fdm 6660 . . . . . . . . 9 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
144, 12, 133syl 18 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → dom 𝐹 = 𝐽)
1514ineq2d 4170 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐴 ∩ dom 𝐹) = (𝐴 𝐽))
1610, 15eqtrid 2778 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → dom (𝐹𝐴) = (𝐴 𝐽))
1716reseq2d 5928 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹 ↾ (𝐴 𝐽)))
189, 17eqtr3id 2780 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹𝐴) = (𝐹 ↾ (𝐴 𝐽)))
19 cmptop 23308 . . . . . . 7 ((𝐽t 𝐴) ∈ Comp → (𝐽t 𝐴) ∈ Top)
2019adantl 481 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) ∈ Top)
21 restrcl 23070 . . . . . 6 ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
226restin 23079 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
2320, 21, 223syl 18 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
2423oveq1d 7361 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → ((𝐽t 𝐴) Cn 𝐾) = ((𝐽t (𝐴 𝐽)) Cn 𝐾))
258, 18, 243eltr4d 2846 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
26 rncmp 23309 . . 3 (((𝐽t 𝐴) ∈ Comp ∧ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾)) → (𝐾t ran (𝐹𝐴)) ∈ Comp)
273, 25, 26syl2anc 584 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t ran (𝐹𝐴)) ∈ Comp)
282, 27eqeltrid 2835 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t (𝐹𝐴)) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3901  wss 3902   cuni 4859  dom cdm 5616  ran crn 5617  cres 5618  cima 5619  wf 6477  (class class class)co 7346  t crest 17321  Topctop 22806   Cn ccn 23137  Compccmp 23299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-en 8870  df-dom 8871  df-fin 8873  df-fi 9295  df-rest 17323  df-topgen 17344  df-top 22807  df-topon 22824  df-bases 22859  df-cn 23140  df-cmp 23300
This theorem is referenced by:  kgencn3  23471  txkgen  23565  xkoco1cn  23570  xkococnlem  23572  cmphaushmeo  23713  cnheiborlem  24878
  Copyright terms: Public domain W3C validator