| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imacmp | Structured version Visualization version GIF version | ||
| Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| imacmp | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5698 | . . 3 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | 1 | oveq2i 7442 | . 2 ⊢ (𝐾 ↾t (𝐹 “ 𝐴)) = (𝐾 ↾t ran (𝐹 ↾ 𝐴)) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) ∈ Comp) | |
| 4 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 5 | inss2 4238 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
| 6 | eqid 2737 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | cnrest 23293 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (𝐹 ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 8 | 4, 5, 7 | sylancl 586 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 9 | resdmres 6252 | . . . . 5 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝐴)) = (𝐹 ↾ 𝐴) | |
| 10 | dmres 6030 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
| 11 | eqid 2737 | . . . . . . . . . 10 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 12 | 6, 11 | cnf 23254 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 13 | fdm 6745 | . . . . . . . . 9 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → dom 𝐹 = ∪ 𝐽) | |
| 14 | 4, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → dom 𝐹 = ∪ 𝐽) |
| 15 | 14 | ineq2d 4220 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐴 ∩ dom 𝐹) = (𝐴 ∩ ∪ 𝐽)) |
| 16 | 10, 15 | eqtrid 2789 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → dom (𝐹 ↾ 𝐴) = (𝐴 ∩ ∪ 𝐽)) |
| 17 | 16 | reseq2d 5997 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ dom (𝐹 ↾ 𝐴)) = (𝐹 ↾ (𝐴 ∩ ∪ 𝐽))) |
| 18 | 9, 17 | eqtr3id 2791 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ 𝐴) = (𝐹 ↾ (𝐴 ∩ ∪ 𝐽))) |
| 19 | cmptop 23403 | . . . . . . 7 ⊢ ((𝐽 ↾t 𝐴) ∈ Comp → (𝐽 ↾t 𝐴) ∈ Top) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) ∈ Top) |
| 21 | restrcl 23165 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | |
| 22 | 6 | restin 23174 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
| 23 | 20, 21, 22 | 3syl 18 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
| 24 | 23 | oveq1d 7446 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → ((𝐽 ↾t 𝐴) Cn 𝐾) = ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 25 | 8, 18, 24 | 3eltr4d 2856 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 26 | rncmp 23404 | . . 3 ⊢ (((𝐽 ↾t 𝐴) ∈ Comp ∧ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) → (𝐾 ↾t ran (𝐹 ↾ 𝐴)) ∈ Comp) | |
| 27 | 3, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t ran (𝐹 ↾ 𝐴)) ∈ Comp) |
| 28 | 2, 27 | eqeltrid 2845 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 ∪ cuni 4907 dom cdm 5685 ran crn 5686 ↾ cres 5687 “ cima 5688 ⟶wf 6557 (class class class)co 7431 ↾t crest 17465 Topctop 22899 Cn ccn 23232 Compccmp 23394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-1o 8506 df-map 8868 df-en 8986 df-dom 8987 df-fin 8989 df-fi 9451 df-rest 17467 df-topgen 17488 df-top 22900 df-topon 22917 df-bases 22953 df-cn 23235 df-cmp 23395 |
| This theorem is referenced by: kgencn3 23566 txkgen 23660 xkoco1cn 23665 xkococnlem 23667 cmphaushmeo 23808 cnheiborlem 24986 |
| Copyright terms: Public domain | W3C validator |