Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imacmp | Structured version Visualization version GIF version |
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
imacmp | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5593 | . . 3 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | 1 | oveq2i 7266 | . 2 ⊢ (𝐾 ↾t (𝐹 “ 𝐴)) = (𝐾 ↾t ran (𝐹 ↾ 𝐴)) |
3 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) ∈ Comp) | |
4 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
5 | inss2 4160 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
6 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | 6 | cnrest 22344 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (𝐹 ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
8 | 4, 5, 7 | sylancl 585 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
9 | resdmres 6124 | . . . . 5 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝐴)) = (𝐹 ↾ 𝐴) | |
10 | dmres 5902 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
11 | eqid 2738 | . . . . . . . . . 10 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
12 | 6, 11 | cnf 22305 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
13 | fdm 6593 | . . . . . . . . 9 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → dom 𝐹 = ∪ 𝐽) | |
14 | 4, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → dom 𝐹 = ∪ 𝐽) |
15 | 14 | ineq2d 4143 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐴 ∩ dom 𝐹) = (𝐴 ∩ ∪ 𝐽)) |
16 | 10, 15 | eqtrid 2790 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → dom (𝐹 ↾ 𝐴) = (𝐴 ∩ ∪ 𝐽)) |
17 | 16 | reseq2d 5880 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ dom (𝐹 ↾ 𝐴)) = (𝐹 ↾ (𝐴 ∩ ∪ 𝐽))) |
18 | 9, 17 | eqtr3id 2793 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ 𝐴) = (𝐹 ↾ (𝐴 ∩ ∪ 𝐽))) |
19 | cmptop 22454 | . . . . . . 7 ⊢ ((𝐽 ↾t 𝐴) ∈ Comp → (𝐽 ↾t 𝐴) ∈ Top) | |
20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) ∈ Top) |
21 | restrcl 22216 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | |
22 | 6 | restin 22225 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
23 | 20, 21, 22 | 3syl 18 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
24 | 23 | oveq1d 7270 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → ((𝐽 ↾t 𝐴) Cn 𝐾) = ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
25 | 8, 18, 24 | 3eltr4d 2854 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
26 | rncmp 22455 | . . 3 ⊢ (((𝐽 ↾t 𝐴) ∈ Comp ∧ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) → (𝐾 ↾t ran (𝐹 ↾ 𝐴)) ∈ Comp) | |
27 | 3, 25, 26 | syl2anc 583 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t ran (𝐹 ↾ 𝐴)) ∈ Comp) |
28 | 2, 27 | eqeltrid 2843 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 ⟶wf 6414 (class class class)co 7255 ↾t crest 17048 Topctop 21950 Cn ccn 22283 Compccmp 22445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-cmp 22446 |
This theorem is referenced by: kgencn3 22617 txkgen 22711 xkoco1cn 22716 xkococnlem 22718 cmphaushmeo 22859 cnheiborlem 24023 |
Copyright terms: Public domain | W3C validator |