| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imacmp | Structured version Visualization version GIF version | ||
| Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| imacmp | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5636 | . . 3 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | 1 | oveq2i 7364 | . 2 ⊢ (𝐾 ↾t (𝐹 “ 𝐴)) = (𝐾 ↾t ran (𝐹 ↾ 𝐴)) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) ∈ Comp) | |
| 4 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 5 | inss2 4191 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
| 6 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | cnrest 23188 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (𝐹 ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 8 | 4, 5, 7 | sylancl 586 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 9 | resdmres 6185 | . . . . 5 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝐴)) = (𝐹 ↾ 𝐴) | |
| 10 | dmres 5967 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
| 11 | eqid 2729 | . . . . . . . . . 10 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 12 | 6, 11 | cnf 23149 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 13 | fdm 6665 | . . . . . . . . 9 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → dom 𝐹 = ∪ 𝐽) | |
| 14 | 4, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → dom 𝐹 = ∪ 𝐽) |
| 15 | 14 | ineq2d 4173 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐴 ∩ dom 𝐹) = (𝐴 ∩ ∪ 𝐽)) |
| 16 | 10, 15 | eqtrid 2776 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → dom (𝐹 ↾ 𝐴) = (𝐴 ∩ ∪ 𝐽)) |
| 17 | 16 | reseq2d 5934 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ dom (𝐹 ↾ 𝐴)) = (𝐹 ↾ (𝐴 ∩ ∪ 𝐽))) |
| 18 | 9, 17 | eqtr3id 2778 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ 𝐴) = (𝐹 ↾ (𝐴 ∩ ∪ 𝐽))) |
| 19 | cmptop 23298 | . . . . . . 7 ⊢ ((𝐽 ↾t 𝐴) ∈ Comp → (𝐽 ↾t 𝐴) ∈ Top) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) ∈ Top) |
| 21 | restrcl 23060 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | |
| 22 | 6 | restin 23069 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
| 23 | 20, 21, 22 | 3syl 18 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
| 24 | 23 | oveq1d 7368 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → ((𝐽 ↾t 𝐴) Cn 𝐾) = ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 25 | 8, 18, 24 | 3eltr4d 2843 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 26 | rncmp 23299 | . . 3 ⊢ (((𝐽 ↾t 𝐴) ∈ Comp ∧ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) → (𝐾 ↾t ran (𝐹 ↾ 𝐴)) ∈ Comp) | |
| 27 | 3, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t ran (𝐹 ↾ 𝐴)) ∈ Comp) |
| 28 | 2, 27 | eqeltrid 2832 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∪ cuni 4861 dom cdm 5623 ran crn 5624 ↾ cres 5625 “ cima 5626 ⟶wf 6482 (class class class)co 7353 ↾t crest 17342 Topctop 22796 Cn ccn 23127 Compccmp 23289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-1o 8395 df-map 8762 df-en 8880 df-dom 8881 df-fin 8883 df-fi 9320 df-rest 17344 df-topgen 17365 df-top 22797 df-topon 22814 df-bases 22849 df-cn 23130 df-cmp 23290 |
| This theorem is referenced by: kgencn3 23461 txkgen 23555 xkoco1cn 23560 xkococnlem 23562 cmphaushmeo 23703 cnheiborlem 24869 |
| Copyright terms: Public domain | W3C validator |