MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacmp Structured version   Visualization version   GIF version

Theorem imacmp 22002
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
imacmp ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t (𝐹𝐴)) ∈ Comp)

Proof of Theorem imacmp
StepHypRef Expression
1 df-ima 5532 . . 3 (𝐹𝐴) = ran (𝐹𝐴)
21oveq2i 7146 . 2 (𝐾t (𝐹𝐴)) = (𝐾t ran (𝐹𝐴))
3 simpr 488 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) ∈ Comp)
4 simpl 486 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 inss2 4156 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
6 eqid 2798 . . . . . 6 𝐽 = 𝐽
76cnrest 21890 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐴 𝐽) ⊆ 𝐽) → (𝐹 ↾ (𝐴 𝐽)) ∈ ((𝐽t (𝐴 𝐽)) Cn 𝐾))
84, 5, 7sylancl 589 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹 ↾ (𝐴 𝐽)) ∈ ((𝐽t (𝐴 𝐽)) Cn 𝐾))
9 resdmres 6056 . . . . 5 (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴)
10 dmres 5840 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
11 eqid 2798 . . . . . . . . . 10 𝐾 = 𝐾
126, 11cnf 21851 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
13 fdm 6495 . . . . . . . . 9 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
144, 12, 133syl 18 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → dom 𝐹 = 𝐽)
1514ineq2d 4139 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐴 ∩ dom 𝐹) = (𝐴 𝐽))
1610, 15syl5eq 2845 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → dom (𝐹𝐴) = (𝐴 𝐽))
1716reseq2d 5818 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹 ↾ (𝐴 𝐽)))
189, 17syl5eqr 2847 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹𝐴) = (𝐹 ↾ (𝐴 𝐽)))
19 cmptop 22000 . . . . . . 7 ((𝐽t 𝐴) ∈ Comp → (𝐽t 𝐴) ∈ Top)
2019adantl 485 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) ∈ Top)
21 restrcl 21762 . . . . . 6 ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
226restin 21771 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
2320, 21, 223syl 18 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
2423oveq1d 7150 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → ((𝐽t 𝐴) Cn 𝐾) = ((𝐽t (𝐴 𝐽)) Cn 𝐾))
258, 18, 243eltr4d 2905 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
26 rncmp 22001 . . 3 (((𝐽t 𝐴) ∈ Comp ∧ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾)) → (𝐾t ran (𝐹𝐴)) ∈ Comp)
273, 25, 26syl2anc 587 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t ran (𝐹𝐴)) ∈ Comp)
282, 27eqeltrid 2894 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t (𝐹𝐴)) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  wss 3881   cuni 4800  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  wf 6320  (class class class)co 7135  t crest 16686  Topctop 21498   Cn ccn 21829  Compccmp 21991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cmp 21992
This theorem is referenced by:  kgencn3  22163  txkgen  22257  xkoco1cn  22262  xkococnlem  22264  cmphaushmeo  22405  cnheiborlem  23559
  Copyright terms: Public domain W3C validator