MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacmp Structured version   Visualization version   GIF version

Theorem imacmp 23300
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
imacmp ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t (𝐹𝐴)) ∈ Comp)

Proof of Theorem imacmp
StepHypRef Expression
1 df-ima 5636 . . 3 (𝐹𝐴) = ran (𝐹𝐴)
21oveq2i 7364 . 2 (𝐾t (𝐹𝐴)) = (𝐾t ran (𝐹𝐴))
3 simpr 484 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) ∈ Comp)
4 simpl 482 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → 𝐹 ∈ (𝐽 Cn 𝐾))
5 inss2 4191 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
6 eqid 2729 . . . . . 6 𝐽 = 𝐽
76cnrest 23188 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐴 𝐽) ⊆ 𝐽) → (𝐹 ↾ (𝐴 𝐽)) ∈ ((𝐽t (𝐴 𝐽)) Cn 𝐾))
84, 5, 7sylancl 586 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹 ↾ (𝐴 𝐽)) ∈ ((𝐽t (𝐴 𝐽)) Cn 𝐾))
9 resdmres 6185 . . . . 5 (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴)
10 dmres 5967 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
11 eqid 2729 . . . . . . . . . 10 𝐾 = 𝐾
126, 11cnf 23149 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
13 fdm 6665 . . . . . . . . 9 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
144, 12, 133syl 18 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → dom 𝐹 = 𝐽)
1514ineq2d 4173 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐴 ∩ dom 𝐹) = (𝐴 𝐽))
1610, 15eqtrid 2776 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → dom (𝐹𝐴) = (𝐴 𝐽))
1716reseq2d 5934 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹 ↾ (𝐴 𝐽)))
189, 17eqtr3id 2778 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹𝐴) = (𝐹 ↾ (𝐴 𝐽)))
19 cmptop 23298 . . . . . . 7 ((𝐽t 𝐴) ∈ Comp → (𝐽t 𝐴) ∈ Top)
2019adantl 481 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) ∈ Top)
21 restrcl 23060 . . . . . 6 ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
226restin 23069 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
2320, 21, 223syl 18 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
2423oveq1d 7368 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → ((𝐽t 𝐴) Cn 𝐾) = ((𝐽t (𝐴 𝐽)) Cn 𝐾))
258, 18, 243eltr4d 2843 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
26 rncmp 23299 . . 3 (((𝐽t 𝐴) ∈ Comp ∧ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾)) → (𝐾t ran (𝐹𝐴)) ∈ Comp)
273, 25, 26syl2anc 584 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t ran (𝐹𝐴)) ∈ Comp)
282, 27eqeltrid 2832 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝐴) ∈ Comp) → (𝐾t (𝐹𝐴)) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905   cuni 4861  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  wf 6482  (class class class)co 7353  t crest 17342  Topctop 22796   Cn ccn 23127  Compccmp 23289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-1o 8395  df-map 8762  df-en 8880  df-dom 8881  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849  df-cn 23130  df-cmp 23290
This theorem is referenced by:  kgencn3  23461  txkgen  23555  xkoco1cn  23560  xkococnlem  23562  cmphaushmeo  23703  cnheiborlem  24869
  Copyright terms: Public domain W3C validator