| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imacmp | Structured version Visualization version GIF version | ||
| Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| imacmp | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5629 | . . 3 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | 1 | oveq2i 7357 | . 2 ⊢ (𝐾 ↾t (𝐹 “ 𝐴)) = (𝐾 ↾t ran (𝐹 ↾ 𝐴)) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) ∈ Comp) | |
| 4 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 5 | inss2 4188 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
| 6 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | cnrest 23198 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (𝐹 ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 8 | 4, 5, 7 | sylancl 586 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 9 | resdmres 6179 | . . . . 5 ⊢ (𝐹 ↾ dom (𝐹 ↾ 𝐴)) = (𝐹 ↾ 𝐴) | |
| 10 | dmres 5961 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
| 11 | eqid 2731 | . . . . . . . . . 10 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 12 | 6, 11 | cnf 23159 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 13 | fdm 6660 | . . . . . . . . 9 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → dom 𝐹 = ∪ 𝐽) | |
| 14 | 4, 12, 13 | 3syl 18 | . . . . . . . 8 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → dom 𝐹 = ∪ 𝐽) |
| 15 | 14 | ineq2d 4170 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐴 ∩ dom 𝐹) = (𝐴 ∩ ∪ 𝐽)) |
| 16 | 10, 15 | eqtrid 2778 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → dom (𝐹 ↾ 𝐴) = (𝐴 ∩ ∪ 𝐽)) |
| 17 | 16 | reseq2d 5928 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ dom (𝐹 ↾ 𝐴)) = (𝐹 ↾ (𝐴 ∩ ∪ 𝐽))) |
| 18 | 9, 17 | eqtr3id 2780 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ 𝐴) = (𝐹 ↾ (𝐴 ∩ ∪ 𝐽))) |
| 19 | cmptop 23308 | . . . . . . 7 ⊢ ((𝐽 ↾t 𝐴) ∈ Comp → (𝐽 ↾t 𝐴) ∈ Top) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) ∈ Top) |
| 21 | restrcl 23070 | . . . . . 6 ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | |
| 22 | 6 | restin 23079 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
| 23 | 20, 21, 22 | 3syl 18 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
| 24 | 23 | oveq1d 7361 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → ((𝐽 ↾t 𝐴) Cn 𝐾) = ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) Cn 𝐾)) |
| 25 | 8, 18, 24 | 3eltr4d 2846 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 26 | rncmp 23309 | . . 3 ⊢ (((𝐽 ↾t 𝐴) ∈ Comp ∧ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) → (𝐾 ↾t ran (𝐹 ↾ 𝐴)) ∈ Comp) | |
| 27 | 3, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t ran (𝐹 ↾ 𝐴)) ∈ Comp) |
| 28 | 2, 27 | eqeltrid 2835 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 ∪ cuni 4859 dom cdm 5616 ran crn 5617 ↾ cres 5618 “ cima 5619 ⟶wf 6477 (class class class)co 7346 ↾t crest 17321 Topctop 22806 Cn ccn 23137 Compccmp 23299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-en 8870 df-dom 8871 df-fin 8873 df-fi 9295 df-rest 17323 df-topgen 17344 df-top 22807 df-topon 22824 df-bases 22859 df-cn 23140 df-cmp 23300 |
| This theorem is referenced by: kgencn3 23471 txkgen 23565 xkoco1cn 23570 xkococnlem 23572 cmphaushmeo 23713 cnheiborlem 24878 |
| Copyright terms: Public domain | W3C validator |