Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmptc | Structured version Visualization version GIF version |
Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
Ref | Expression |
---|---|
rnmptc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptc.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
rnmptc | ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptc.a | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | rnmptc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | fconstmpt 5640 | . . . . 5 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 2, 3 | eqtr4i 2769 | . . . 4 ⊢ 𝐹 = (𝐴 × {𝐵}) |
5 | 4 | rneqi 5835 | . . 3 ⊢ ran 𝐹 = ran (𝐴 × {𝐵}) |
6 | rnxp 6062 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
7 | 5, 6 | eqtrid 2790 | . 2 ⊢ (𝐴 ≠ ∅ → ran 𝐹 = {𝐵}) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 ∅c0 4253 {csn 4558 ↦ cmpt 5153 × cxp 5578 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: qsalrel 40141 limsup0 43125 limsuppnfdlem 43132 limsup10ex 43204 liminf10ex 43205 fourierdlem60 43597 fourierdlem61 43598 sge0z 43803 |
Copyright terms: Public domain | W3C validator |