| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptc | Structured version Visualization version GIF version | ||
| Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
| Ref | Expression |
|---|---|
| rnmptc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rnmptc.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| rnmptc | ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptc.a | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | rnmptc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | fconstmpt 5703 | . . . . 5 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 2, 3 | eqtr4i 2756 | . . . 4 ⊢ 𝐹 = (𝐴 × {𝐵}) |
| 5 | 4 | rneqi 5904 | . . 3 ⊢ ran 𝐹 = ran (𝐴 × {𝐵}) |
| 6 | rnxp 6146 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
| 7 | 5, 6 | eqtrid 2777 | . 2 ⊢ (𝐴 ≠ ∅ → ran 𝐹 = {𝐵}) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 ∅c0 4299 {csn 4592 ↦ cmpt 5191 × cxp 5639 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: mptiffisupp 32623 qsalrel 42235 limsup0 45699 limsuppnfdlem 45706 limsup10ex 45778 liminf10ex 45779 fourierdlem60 46171 fourierdlem61 46172 sge0z 46380 |
| Copyright terms: Public domain | W3C validator |