![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmptc | Structured version Visualization version GIF version |
Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
Ref | Expression |
---|---|
rnmptc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptc.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
rnmptc | ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptc.a | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | rnmptc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | fconstmpt 5762 | . . . . 5 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 2, 3 | eqtr4i 2771 | . . . 4 ⊢ 𝐹 = (𝐴 × {𝐵}) |
5 | 4 | rneqi 5962 | . . 3 ⊢ ran 𝐹 = ran (𝐴 × {𝐵}) |
6 | rnxp 6201 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
7 | 5, 6 | eqtrid 2792 | . 2 ⊢ (𝐴 ≠ ∅ → ran 𝐹 = {𝐵}) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 ∅c0 4352 {csn 4648 ↦ cmpt 5249 × cxp 5698 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: mptiffisupp 32705 qsalrel 42235 limsup0 45615 limsuppnfdlem 45622 limsup10ex 45694 liminf10ex 45695 fourierdlem60 46087 fourierdlem61 46088 sge0z 46296 |
Copyright terms: Public domain | W3C validator |