| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptc | Structured version Visualization version GIF version | ||
| Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
| Ref | Expression |
|---|---|
| rnmptc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rnmptc.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| rnmptc | ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptc.a | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | rnmptc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | fconstmpt 5676 | . . . . 5 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 2, 3 | eqtr4i 2757 | . . . 4 ⊢ 𝐹 = (𝐴 × {𝐵}) |
| 5 | 4 | rneqi 5876 | . . 3 ⊢ ran 𝐹 = ran (𝐴 × {𝐵}) |
| 6 | rnxp 6117 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
| 7 | 5, 6 | eqtrid 2778 | . 2 ⊢ (𝐴 ≠ ∅ → ran 𝐹 = {𝐵}) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∅c0 4280 {csn 4573 ↦ cmpt 5170 × cxp 5612 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: mptiffisupp 32674 qsalrel 42281 limsup0 45740 limsuppnfdlem 45747 limsup10ex 45819 liminf10ex 45820 fourierdlem60 46212 fourierdlem61 46213 sge0z 46421 |
| Copyright terms: Public domain | W3C validator |