![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmptc | Structured version Visualization version GIF version |
Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
Ref | Expression |
---|---|
rnmptc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptc.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
rnmptc | ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptc.a | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | rnmptc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | fconstmpt 5738 | . . . . 5 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 2, 3 | eqtr4i 2762 | . . . 4 ⊢ 𝐹 = (𝐴 × {𝐵}) |
5 | 4 | rneqi 5936 | . . 3 ⊢ ran 𝐹 = ran (𝐴 × {𝐵}) |
6 | rnxp 6169 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
7 | 5, 6 | eqtrid 2783 | . 2 ⊢ (𝐴 ≠ ∅ → ran 𝐹 = {𝐵}) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ≠ wne 2939 ∅c0 4322 {csn 4628 ↦ cmpt 5231 × cxp 5674 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: mptiffisupp 32347 qsalrel 41528 limsup0 44868 limsuppnfdlem 44875 limsup10ex 44947 liminf10ex 44948 fourierdlem60 45340 fourierdlem61 45341 sge0z 45549 |
Copyright terms: Public domain | W3C validator |