MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmptc Structured version   Visualization version   GIF version

Theorem rnmptc 7227
Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.)
Hypotheses
Ref Expression
rnmptc.f 𝐹 = (𝑥𝐴𝐵)
rnmptc.a (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
rnmptc (𝜑 → ran 𝐹 = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptc
StepHypRef Expression
1 rnmptc.a . 2 (𝜑𝐴 ≠ ∅)
2 rnmptc.f . . . . 5 𝐹 = (𝑥𝐴𝐵)
3 fconstmpt 5751 . . . . 5 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
42, 3eqtr4i 2766 . . . 4 𝐹 = (𝐴 × {𝐵})
54rneqi 5951 . . 3 ran 𝐹 = ran (𝐴 × {𝐵})
6 rnxp 6192 . . 3 (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵})
75, 6eqtrid 2787 . 2 (𝐴 ≠ ∅ → ran 𝐹 = {𝐵})
81, 7syl 17 1 (𝜑 → ran 𝐹 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 2938  c0 4339  {csn 4631  cmpt 5231   × cxp 5687  ran crn 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  mptiffisupp  32708  qsalrel  42260  limsup0  45650  limsuppnfdlem  45657  limsup10ex  45729  liminf10ex  45730  fourierdlem60  46122  fourierdlem61  46123  sge0z  46331
  Copyright terms: Public domain W3C validator