| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptc | Structured version Visualization version GIF version | ||
| Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
| Ref | Expression |
|---|---|
| rnmptc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rnmptc.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| rnmptc | ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptc.a | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | rnmptc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | fconstmpt 5727 | . . . . 5 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 2, 3 | eqtr4i 2760 | . . . 4 ⊢ 𝐹 = (𝐴 × {𝐵}) |
| 5 | 4 | rneqi 5928 | . . 3 ⊢ ran 𝐹 = ran (𝐴 × {𝐵}) |
| 6 | rnxp 6170 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
| 7 | 5, 6 | eqtrid 2781 | . 2 ⊢ (𝐴 ≠ ∅ → ran 𝐹 = {𝐵}) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ≠ wne 2931 ∅c0 4313 {csn 4606 ↦ cmpt 5205 × cxp 5663 ran crn 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 |
| This theorem is referenced by: mptiffisupp 32638 qsalrel 42255 limsup0 45681 limsuppnfdlem 45688 limsup10ex 45760 liminf10ex 45761 fourierdlem60 46153 fourierdlem61 46154 sge0z 46362 |
| Copyright terms: Public domain | W3C validator |