Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmptc | Structured version Visualization version GIF version |
Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
Ref | Expression |
---|---|
rnmptc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptc.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
rnmptc | ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptc.a | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | rnmptc.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | fconstmpt 5649 | . . . . 5 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 2, 3 | eqtr4i 2769 | . . . 4 ⊢ 𝐹 = (𝐴 × {𝐵}) |
5 | 4 | rneqi 5846 | . . 3 ⊢ ran 𝐹 = ran (𝐴 × {𝐵}) |
6 | rnxp 6073 | . . 3 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵}) | |
7 | 5, 6 | eqtrid 2790 | . 2 ⊢ (𝐴 ≠ ∅ → ran 𝐹 = {𝐵}) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2943 ∅c0 4256 {csn 4561 ↦ cmpt 5157 × cxp 5587 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: qsalrel 40215 limsup0 43235 limsuppnfdlem 43242 limsup10ex 43314 liminf10ex 43315 fourierdlem60 43707 fourierdlem61 43708 sge0z 43913 |
Copyright terms: Public domain | W3C validator |