| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cli | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cli | ⊢ 〈“𝐴”〉 ∈ Word V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ids1 14618 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
| 2 | fvex 6900 | . . 3 ⊢ ( I ‘𝐴) ∈ V | |
| 3 | s1cl 14623 | . . 3 ⊢ (( I ‘𝐴) ∈ V → 〈“( I ‘𝐴)”〉 ∈ Word V) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈“( I ‘𝐴)”〉 ∈ Word V |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 〈“𝐴”〉 ∈ Word V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3464 I cid 5559 ‘cfv 6542 Word cword 14535 〈“cs1 14616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-word 14536 df-s1 14617 |
| This theorem is referenced by: s1dm 14629 eqs1 14633 ccatws1clv 14638 ccats1alpha 14640 ccatws1len 14641 ccat2s1len 14644 ccats1val1 14647 ccat1st1st 14649 ccat2s1p1 14650 ccat2s1p2 14651 ccatw2s1ass 14652 ccat2s1fvw 14659 revs1 14786 cats1cli 14879 cats1fvn 14880 cats1fv 14881 cats1len 14882 cats1cat 14883 cats2cat 14884 s2cli 14902 s2fv0 14909 s2fv1 14910 s2len 14911 s0s1 14944 s1s2 14945 s1s3 14946 s1s4 14947 s1s5 14948 s1s6 14949 s1s7 14950 s2s2 14951 s4s2 14952 s2s5 14956 s5s2 14957 s2rn 14985 s3rn 14986 s7rn 14987 clwwlkwwlksb 30020 clwwlknon1sn 30066 clwwlknon1le1 30067 1pthon2v 30119 wlk2v2e 30123 konigsberglem1 30218 konigsberglem2 30219 konigsberglem3 30220 ccatws1f1o 32883 loop1cycl 35083 mrsubcv 35456 mrsubrn 35459 mvhf1 35505 msubvrs 35506 |
| Copyright terms: Public domain | W3C validator |