Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1cli | Structured version Visualization version GIF version |
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1cli | ⊢ 〈“𝐴”〉 ∈ Word V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ids1 14393 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
2 | fvex 6832 | . . 3 ⊢ ( I ‘𝐴) ∈ V | |
3 | s1cl 14398 | . . 3 ⊢ (( I ‘𝐴) ∈ V → 〈“( I ‘𝐴)”〉 ∈ Word V) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈“( I ‘𝐴)”〉 ∈ Word V |
5 | 1, 4 | eqeltri 2833 | 1 ⊢ 〈“𝐴”〉 ∈ Word V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 I cid 5511 ‘cfv 6473 Word cword 14309 〈“cs1 14391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-fzo 13476 df-word 14310 df-s1 14392 |
This theorem is referenced by: s1dm 14404 eqs1 14408 ccatws1clv 14413 ccats1alpha 14415 ccatws1len 14416 ccat2s1len 14419 ccats1val1 14422 ccat1st1st 14425 ccat2s1p1 14426 ccat2s1p2 14427 ccatw2s1ass 14430 ccat2s1fvw 14439 revs1 14568 cats1cli 14661 cats1fvn 14662 cats1fv 14663 cats1len 14664 cats1cat 14665 cats2cat 14666 s2cli 14684 s2fv0 14691 s2fv1 14692 s2len 14693 s0s1 14726 s1s2 14727 s1s3 14728 s1s4 14729 s1s5 14730 s1s6 14731 s1s7 14732 s2s2 14733 s4s2 14734 s2s5 14738 s5s2 14739 clwwlkwwlksb 28619 clwwlknon1sn 28665 clwwlknon1le1 28666 1pthon2v 28718 wlk2v2e 28722 konigsberglem1 28817 konigsberglem2 28818 konigsberglem3 28819 loop1cycl 33311 mrsubcv 33684 mrsubrn 33687 mvhf1 33733 msubvrs 33734 |
Copyright terms: Public domain | W3C validator |