![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1cli | Structured version Visualization version GIF version |
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1cli | ⊢ 〈“𝐴”〉 ∈ Word V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ids1 14641 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
2 | fvex 6932 | . . 3 ⊢ ( I ‘𝐴) ∈ V | |
3 | s1cl 14646 | . . 3 ⊢ (( I ‘𝐴) ∈ V → 〈“( I ‘𝐴)”〉 ∈ Word V) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈“( I ‘𝐴)”〉 ∈ Word V |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 〈“𝐴”〉 ∈ Word V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 Vcvv 3482 I cid 5596 ‘cfv 6572 Word cword 14558 〈“cs1 14639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-n0 12550 df-z 12636 df-uz 12900 df-fz 13564 df-fzo 13708 df-word 14559 df-s1 14640 |
This theorem is referenced by: s1dm 14652 eqs1 14656 ccatws1clv 14661 ccats1alpha 14663 ccatws1len 14664 ccat2s1len 14667 ccats1val1 14670 ccat1st1st 14672 ccat2s1p1 14673 ccat2s1p2 14674 ccatw2s1ass 14675 ccat2s1fvw 14682 revs1 14809 cats1cli 14902 cats1fvn 14903 cats1fv 14904 cats1len 14905 cats1cat 14906 cats2cat 14907 s2cli 14925 s2fv0 14932 s2fv1 14933 s2len 14934 s0s1 14967 s1s2 14968 s1s3 14969 s1s4 14970 s1s5 14971 s1s6 14972 s1s7 14973 s2s2 14974 s4s2 14975 s2s5 14979 s5s2 14980 s2rn 15008 s3rn 15009 s7rn 15010 clwwlkwwlksb 30077 clwwlknon1sn 30123 clwwlknon1le1 30124 1pthon2v 30176 wlk2v2e 30180 konigsberglem1 30275 konigsberglem2 30276 konigsberglem3 30277 ccatws1f1o 32910 loop1cycl 35097 mrsubcv 35470 mrsubrn 35473 mvhf1 35519 msubvrs 35520 |
Copyright terms: Public domain | W3C validator |