![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1cli | Structured version Visualization version GIF version |
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1cli | ⊢ 〈“𝐴”〉 ∈ Word V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ids1 14638 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
2 | fvex 6924 | . . 3 ⊢ ( I ‘𝐴) ∈ V | |
3 | s1cl 14643 | . . 3 ⊢ (( I ‘𝐴) ∈ V → 〈“( I ‘𝐴)”〉 ∈ Word V) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈“( I ‘𝐴)”〉 ∈ Word V |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 〈“𝐴”〉 ∈ Word V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3479 I cid 5583 ‘cfv 6566 Word cword 14555 〈“cs1 14636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-n0 12531 df-z 12618 df-uz 12883 df-fz 13551 df-fzo 13698 df-word 14556 df-s1 14637 |
This theorem is referenced by: s1dm 14649 eqs1 14653 ccatws1clv 14658 ccats1alpha 14660 ccatws1len 14661 ccat2s1len 14664 ccats1val1 14667 ccat1st1st 14669 ccat2s1p1 14670 ccat2s1p2 14671 ccatw2s1ass 14672 ccat2s1fvw 14679 revs1 14806 cats1cli 14899 cats1fvn 14900 cats1fv 14901 cats1len 14902 cats1cat 14903 cats2cat 14904 s2cli 14922 s2fv0 14929 s2fv1 14930 s2len 14931 s0s1 14964 s1s2 14965 s1s3 14966 s1s4 14967 s1s5 14968 s1s6 14969 s1s7 14970 s2s2 14971 s4s2 14972 s2s5 14976 s5s2 14977 s2rn 15005 s3rn 15006 s7rn 15007 clwwlkwwlksb 30096 clwwlknon1sn 30142 clwwlknon1le1 30143 1pthon2v 30195 wlk2v2e 30199 konigsberglem1 30294 konigsberglem2 30295 konigsberglem3 30296 ccatws1f1o 32934 loop1cycl 35134 mrsubcv 35507 mrsubrn 35510 mvhf1 35556 msubvrs 35557 |
Copyright terms: Public domain | W3C validator |