| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cli | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cli | ⊢ 〈“𝐴”〉 ∈ Word V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ids1 14568 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
| 2 | fvex 6873 | . . 3 ⊢ ( I ‘𝐴) ∈ V | |
| 3 | s1cl 14573 | . . 3 ⊢ (( I ‘𝐴) ∈ V → 〈“( I ‘𝐴)”〉 ∈ Word V) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈“( I ‘𝐴)”〉 ∈ Word V |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 〈“𝐴”〉 ∈ Word V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 I cid 5534 ‘cfv 6513 Word cword 14484 〈“cs1 14566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-word 14485 df-s1 14567 |
| This theorem is referenced by: s1dm 14579 eqs1 14583 ccatws1clv 14588 ccats1alpha 14590 ccatws1len 14591 ccat2s1len 14594 ccats1val1 14597 ccat1st1st 14599 ccat2s1p1 14600 ccat2s1p2 14601 ccatw2s1ass 14602 ccat2s1fvw 14609 revs1 14736 cats1cli 14829 cats1fvn 14830 cats1fv 14831 cats1len 14832 cats1cat 14833 cats2cat 14834 s2cli 14852 s2fv0 14859 s2fv1 14860 s2len 14861 s0s1 14894 s1s2 14895 s1s3 14896 s1s4 14897 s1s5 14898 s1s6 14899 s1s7 14900 s2s2 14901 s4s2 14902 s2s5 14906 s5s2 14907 s2rn 14935 s3rn 14936 s7rn 14937 clwwlkwwlksb 29989 clwwlknon1sn 30035 clwwlknon1le1 30036 1pthon2v 30088 wlk2v2e 30092 konigsberglem1 30187 konigsberglem2 30188 konigsberglem3 30189 ccatws1f1o 32879 loop1cycl 35124 mrsubcv 35497 mrsubrn 35500 mvhf1 35546 msubvrs 35547 |
| Copyright terms: Public domain | W3C validator |