| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cli | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cli | ⊢ 〈“𝐴”〉 ∈ Word V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ids1 14505 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
| 2 | fvex 6835 | . . 3 ⊢ ( I ‘𝐴) ∈ V | |
| 3 | s1cl 14510 | . . 3 ⊢ (( I ‘𝐴) ∈ V → 〈“( I ‘𝐴)”〉 ∈ Word V) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈“( I ‘𝐴)”〉 ∈ Word V |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 〈“𝐴”〉 ∈ Word V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 I cid 5508 ‘cfv 6481 Word cword 14420 〈“cs1 14503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-word 14421 df-s1 14504 |
| This theorem is referenced by: s1dm 14516 eqs1 14520 ccatws1clv 14525 ccats1alpha 14527 ccatws1len 14528 ccat2s1len 14531 ccats1val1 14534 ccat1st1st 14536 ccat2s1p1 14537 ccat2s1p2 14538 ccatw2s1ass 14539 ccat2s1fvw 14546 revs1 14672 cats1cli 14764 cats1fvn 14765 cats1fv 14766 cats1len 14767 cats1cat 14768 cats2cat 14769 s2cli 14787 s2fv0 14794 s2fv1 14795 s2len 14796 s0s1 14829 s1s2 14830 s1s3 14831 s1s4 14832 s1s5 14833 s1s6 14834 s1s7 14835 s2s2 14836 s4s2 14837 s2s5 14841 s5s2 14842 s2rn 14870 s3rn 14871 s7rn 14872 clwwlkwwlksb 30034 clwwlknon1sn 30080 clwwlknon1le1 30081 1pthon2v 30133 wlk2v2e 30137 konigsberglem1 30232 konigsberglem2 30233 konigsberglem3 30234 ccatws1f1o 32932 loop1cycl 35181 mrsubcv 35554 mrsubrn 35557 mvhf1 35603 msubvrs 35604 |
| Copyright terms: Public domain | W3C validator |