| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cli | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cli | ⊢ 〈“𝐴”〉 ∈ Word V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ids1 14572 | . 2 ⊢ 〈“𝐴”〉 = 〈“( I ‘𝐴)”〉 | |
| 2 | fvex 6878 | . . 3 ⊢ ( I ‘𝐴) ∈ V | |
| 3 | s1cl 14577 | . . 3 ⊢ (( I ‘𝐴) ∈ V → 〈“( I ‘𝐴)”〉 ∈ Word V) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈“( I ‘𝐴)”〉 ∈ Word V |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 〈“𝐴”〉 ∈ Word V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3455 I cid 5540 ‘cfv 6519 Word cword 14488 〈“cs1 14570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-word 14489 df-s1 14571 |
| This theorem is referenced by: s1dm 14583 eqs1 14587 ccatws1clv 14592 ccats1alpha 14594 ccatws1len 14595 ccat2s1len 14598 ccats1val1 14601 ccat1st1st 14603 ccat2s1p1 14604 ccat2s1p2 14605 ccatw2s1ass 14606 ccat2s1fvw 14613 revs1 14740 cats1cli 14833 cats1fvn 14834 cats1fv 14835 cats1len 14836 cats1cat 14837 cats2cat 14838 s2cli 14856 s2fv0 14863 s2fv1 14864 s2len 14865 s0s1 14898 s1s2 14899 s1s3 14900 s1s4 14901 s1s5 14902 s1s6 14903 s1s7 14904 s2s2 14905 s4s2 14906 s2s5 14910 s5s2 14911 s2rn 14939 s3rn 14940 s7rn 14941 clwwlkwwlksb 29990 clwwlknon1sn 30036 clwwlknon1le1 30037 1pthon2v 30089 wlk2v2e 30093 konigsberglem1 30188 konigsberglem2 30189 konigsberglem3 30190 ccatws1f1o 32881 loop1cycl 35126 mrsubcv 35499 mrsubrn 35502 mvhf1 35548 msubvrs 35549 |
| Copyright terms: Public domain | W3C validator |