MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1cld Structured version   Visualization version   GIF version

Theorem s1cld 14575
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
s1cld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
s1cld (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)

Proof of Theorem s1cld
StepHypRef Expression
1 s1cld.1 . 2 (𝜑𝐴𝐵)
2 s1cl 14574 . 2 (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
31, 2syl 17 1 (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Word cword 14485  ⟨“cs1 14567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-word 14486  df-s1 14568
This theorem is referenced by:  lswccats1fst  14607  ccats1pfxeqbi  14714  cats1cld  14828  cats1co  14829  s2cld  14844  s2co  14893  ofs2  14944  gsumwspan  18780  frmdgsum  18796  frmdss2  18797  frmdup2  18799  gsumwrev  19305  psgnunilem5  19431  efginvrel2  19664  efgs1  19672  efgsp1  19674  efgredlemd  19681  efgredlemc  19682  efgrelexlemb  19687  vrgpf  19705  vrgpinv  19706  frgpup2  19713  frgpup3lem  19714  frgpnabllem1  19810  pgpfaclem1  20020  tgcgr4  28465  clwlkclwwlk2  29939  clwlkclwwlkfo  29945  clwwlkel  29982  clwwlkfo  29986  clwwlkwwlksb  29990  ccatws1f1olast  32881  s1chn  32943  chnind  32944  chnub  32945  chnccats1  32948  cycpmco2f1  33088  cycpmco2rn  33089  cycpmco2lem2  33091  cycpmco2lem3  33092  cycpmco2lem4  33093  cycpmco2lem5  33094  cycpmco2lem6  33095  cycpmco2lem7  33096  cycpmco2  33097  cyc3genpmlem  33115  elrgspnlem3  33202  unitprodclb  33367  1arithidomlem2  33514  1arithufdlem1  33522  1arithufdlem3  33524  1arithufdlem4  33525  fldext2chn  33725  constrextdg2lem  33745  sseqf  34390  ofcs2  34543  signsvtn  34582  mrsubcv  35504  mrsubff  35506  mrsubrn  35507  mrsubccat  35512  elmrsubrn  35514  mrsubco  35515  mrsubvrs  35516  mvhf  35552  msubvrs  35554  gsumws3  44192  gsumws4  44193
  Copyright terms: Public domain W3C validator