MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1cld Structured version   Visualization version   GIF version

Theorem s1cld 14528
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
s1cld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
s1cld (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)

Proof of Theorem s1cld
StepHypRef Expression
1 s1cld.1 . 2 (𝜑𝐴𝐵)
2 s1cl 14527 . 2 (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
31, 2syl 17 1 (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Word cword 14438  ⟨“cs1 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-word 14439  df-s1 14521
This theorem is referenced by:  lswccats1fst  14560  ccats1pfxeqbi  14666  cats1cld  14780  cats1co  14781  s2cld  14796  s2co  14845  ofs2  14896  gsumwspan  18738  frmdgsum  18754  frmdss2  18755  frmdup2  18757  gsumwrev  19263  psgnunilem5  19391  efginvrel2  19624  efgs1  19632  efgsp1  19634  efgredlemd  19641  efgredlemc  19642  efgrelexlemb  19647  vrgpf  19665  vrgpinv  19666  frgpup2  19673  frgpup3lem  19674  frgpnabllem1  19770  pgpfaclem1  19980  tgcgr4  28494  clwlkclwwlk2  29965  clwlkclwwlkfo  29971  clwwlkel  30008  clwwlkfo  30012  clwwlkwwlksb  30016  ccatws1f1olast  32907  s1chn  32965  chnind  32966  chnub  32967  chnccats1  32970  cycpmco2f1  33079  cycpmco2rn  33080  cycpmco2lem2  33082  cycpmco2lem3  33083  cycpmco2lem4  33084  cycpmco2lem5  33085  cycpmco2lem6  33086  cycpmco2lem7  33087  cycpmco2  33088  cyc3genpmlem  33106  elrgspnlem3  33197  unitprodclb  33339  1arithidomlem2  33486  1arithufdlem1  33494  1arithufdlem3  33496  1arithufdlem4  33497  fldext2chn  33697  constrextdg2lem  33717  sseqf  34362  ofcs2  34515  signsvtn  34554  mrsubcv  35485  mrsubff  35487  mrsubrn  35488  mrsubccat  35493  elmrsubrn  35495  mrsubco  35496  mrsubvrs  35497  mvhf  35533  msubvrs  35535  gsumws3  44172  gsumws4  44173
  Copyright terms: Public domain W3C validator