| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cld | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| s1cld | ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | s1cl 14574 | . 2 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Word cword 14485 〈“cs1 14567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-word 14486 df-s1 14568 |
| This theorem is referenced by: lswccats1fst 14607 ccats1pfxeqbi 14714 cats1cld 14828 cats1co 14829 s2cld 14844 s2co 14893 ofs2 14944 gsumwspan 18780 frmdgsum 18796 frmdss2 18797 frmdup2 18799 gsumwrev 19305 psgnunilem5 19431 efginvrel2 19664 efgs1 19672 efgsp1 19674 efgredlemd 19681 efgredlemc 19682 efgrelexlemb 19687 vrgpf 19705 vrgpinv 19706 frgpup2 19713 frgpup3lem 19714 frgpnabllem1 19810 pgpfaclem1 20020 tgcgr4 28465 clwlkclwwlk2 29939 clwlkclwwlkfo 29945 clwwlkel 29982 clwwlkfo 29986 clwwlkwwlksb 29990 ccatws1f1olast 32881 s1chn 32943 chnind 32944 chnub 32945 chnccats1 32948 cycpmco2f1 33088 cycpmco2rn 33089 cycpmco2lem2 33091 cycpmco2lem3 33092 cycpmco2lem4 33093 cycpmco2lem5 33094 cycpmco2lem6 33095 cycpmco2lem7 33096 cycpmco2 33097 cyc3genpmlem 33115 elrgspnlem3 33202 unitprodclb 33367 1arithidomlem2 33514 1arithufdlem1 33522 1arithufdlem3 33524 1arithufdlem4 33525 fldext2chn 33725 constrextdg2lem 33745 sseqf 34390 ofcs2 34543 signsvtn 34582 mrsubcv 35504 mrsubff 35506 mrsubrn 35507 mrsubccat 35512 elmrsubrn 35514 mrsubco 35515 mrsubvrs 35516 mvhf 35552 msubvrs 35554 gsumws3 44192 gsumws4 44193 |
| Copyright terms: Public domain | W3C validator |