| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cld | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| s1cld | ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | s1cl 14510 | . 2 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Word cword 14420 〈“cs1 14503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-word 14421 df-s1 14504 |
| This theorem is referenced by: lswccats1fst 14543 ccats1pfxeqbi 14649 cats1cld 14762 cats1co 14763 s2cld 14778 s2co 14827 ofs2 14878 s1chn 18526 chnind 18527 chnub 18528 chnccats1 18531 gsumwspan 18754 frmdgsum 18770 frmdss2 18771 frmdup2 18773 gsumwrev 19279 psgnunilem5 19407 efginvrel2 19640 efgs1 19648 efgsp1 19650 efgredlemd 19657 efgredlemc 19658 efgrelexlemb 19663 vrgpf 19681 vrgpinv 19682 frgpup2 19689 frgpup3lem 19690 frgpnabllem1 19786 pgpfaclem1 19996 tgcgr4 28510 clwlkclwwlk2 29981 clwlkclwwlkfo 29987 clwwlkel 30024 clwwlkfo 30028 clwwlkwwlksb 30032 ccatws1f1olast 32931 cycpmco2f1 33091 cycpmco2rn 33092 cycpmco2lem2 33094 cycpmco2lem3 33095 cycpmco2lem4 33096 cycpmco2lem5 33097 cycpmco2lem6 33098 cycpmco2lem7 33099 cycpmco2 33100 cyc3genpmlem 33118 elrgspnlem3 33209 unitprodclb 33352 1arithidomlem2 33499 1arithufdlem1 33507 1arithufdlem3 33509 1arithufdlem4 33510 fldext2chn 33739 constrextdg2lem 33759 sseqf 34403 ofcs2 34556 signsvtn 34595 mrsubcv 35552 mrsubff 35554 mrsubrn 35555 mrsubccat 35560 elmrsubrn 35562 mrsubco 35563 mrsubvrs 35564 mvhf 35600 msubvrs 35602 gsumws3 44235 gsumws4 44236 |
| Copyright terms: Public domain | W3C validator |