| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cld | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| s1cld | ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | s1cl 14512 | . 2 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Word cword 14422 〈“cs1 14505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-word 14423 df-s1 14506 |
| This theorem is referenced by: lswccats1fst 14545 ccats1pfxeqbi 14651 cats1cld 14764 cats1co 14765 s2cld 14780 s2co 14829 ofs2 14880 s1chn 18528 chnind 18529 chnub 18530 chnccats1 18533 gsumwspan 18756 frmdgsum 18772 frmdss2 18773 frmdup2 18775 gsumwrev 19280 psgnunilem5 19408 efginvrel2 19641 efgs1 19649 efgsp1 19651 efgredlemd 19658 efgredlemc 19659 efgrelexlemb 19664 vrgpf 19682 vrgpinv 19683 frgpup2 19690 frgpup3lem 19691 frgpnabllem1 19787 pgpfaclem1 19997 tgcgr4 28510 clwlkclwwlk2 29985 clwlkclwwlkfo 29991 clwwlkel 30028 clwwlkfo 30032 clwwlkwwlksb 30036 ccatws1f1olast 32940 cycpmco2f1 33100 cycpmco2rn 33101 cycpmco2lem2 33103 cycpmco2lem3 33104 cycpmco2lem4 33105 cycpmco2lem5 33106 cycpmco2lem6 33107 cycpmco2lem7 33108 cycpmco2 33109 cyc3genpmlem 33127 elrgspnlem3 33218 unitprodclb 33361 1arithidomlem2 33508 1arithufdlem1 33516 1arithufdlem3 33518 1arithufdlem4 33519 fldext2chn 33762 constrextdg2lem 33782 sseqf 34426 ofcs2 34579 signsvtn 34618 mrsubcv 35575 mrsubff 35577 mrsubrn 35578 mrsubccat 35583 elmrsubrn 35585 mrsubco 35586 mrsubvrs 35587 mvhf 35623 msubvrs 35625 gsumws3 44314 gsumws4 44315 |
| Copyright terms: Public domain | W3C validator |