![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1cld | Structured version Visualization version GIF version |
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1cld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
s1cld | ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | s1cl 14588 | . 2 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Word cword 14500 〈“cs1 14581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-word 14501 df-s1 14582 |
This theorem is referenced by: lswccats1fst 14621 ccats1pfxeqbi 14728 cats1cld 14842 cats1co 14843 s2cld 14858 s2co 14907 ofs2 14954 gsumwspan 18806 frmdgsum 18822 frmdss2 18823 frmdup2 18825 gsumwrev 19332 psgnunilem5 19461 efginvrel2 19694 efgs1 19702 efgsp1 19704 efgredlemd 19711 efgredlemc 19712 efgrelexlemb 19717 vrgpf 19735 vrgpinv 19736 frgpup2 19743 frgpup3lem 19744 frgpnabllem1 19840 pgpfaclem1 20050 tgcgr4 28407 clwlkclwwlk2 29885 clwlkclwwlkfo 29891 clwwlkel 29928 clwwlkfo 29932 clwwlkwwlksb 29936 ccatws1f1olast 32762 cycpmco2f1 32937 cycpmco2rn 32938 cycpmco2lem2 32940 cycpmco2lem3 32941 cycpmco2lem4 32942 cycpmco2lem5 32943 cycpmco2lem6 32944 cycpmco2lem7 32945 cycpmco2 32946 cyc3genpmlem 32964 unitprodclb 33201 1arithidomlem2 33348 1arithufdlem1 33359 1arithufdlem3 33361 1arithufdlem4 33362 sseqf 34143 ofcs2 34308 signsvtn 34347 mrsubcv 35251 mrsubff 35253 mrsubrn 35254 mrsubccat 35259 elmrsubrn 35261 mrsubco 35262 mrsubvrs 35263 mvhf 35299 msubvrs 35301 gsumws3 43768 gsumws4 43769 |
Copyright terms: Public domain | W3C validator |