MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1cld Structured version   Visualization version   GIF version

Theorem s1cld 14160
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
s1cld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
s1cld (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)

Proof of Theorem s1cld
StepHypRef Expression
1 s1cld.1 . 2 (𝜑𝐴𝐵)
2 s1cl 14159 . 2 (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
31, 2syl 17 1 (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Word cword 14069  ⟨“cs1 14152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-word 14070  df-s1 14153
This theorem is referenced by:  lswccats1fst  14197  ccats1pfxeqbi  14307  cats1cld  14420  cats1co  14421  s2cld  14436  s2co  14485  ofs2  14534  gsumwspan  18273  frmdgsum  18289  frmdss2  18290  frmdup2  18292  gsumwrev  18758  psgnunilem5  18886  efginvrel2  19117  efgs1  19125  efgsp1  19127  efgredlemd  19134  efgredlemc  19135  efgrelexlemb  19140  vrgpf  19158  vrgpinv  19159  frgpup2  19166  frgpup3lem  19167  frgpnabllem1  19258  pgpfaclem1  19468  tgcgr4  26622  wlklenvclwlkOLD  27743  clwlkclwwlk2  28086  clwlkclwwlkfo  28092  clwwlkel  28129  clwwlkfo  28133  clwwlkwwlksb  28137  cycpmco2f1  31110  cycpmco2rn  31111  cycpmco2lem2  31113  cycpmco2lem3  31114  cycpmco2lem4  31115  cycpmco2lem5  31116  cycpmco2lem6  31117  cycpmco2lem7  31118  cycpmco2  31119  cyc3genpmlem  31137  sseqf  32071  ofcs2  32236  signsvtn  32275  mrsubcv  33185  mrsubff  33187  mrsubrn  33188  mrsubccat  33193  elmrsubrn  33195  mrsubco  33196  mrsubvrs  33197  mvhf  33233  msubvrs  33235  gsumws3  41485  gsumws4  41486
  Copyright terms: Public domain W3C validator