| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cld | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| s1cld | ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | s1cl 14527 | . 2 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Word cword 14438 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-word 14439 df-s1 14521 |
| This theorem is referenced by: lswccats1fst 14560 ccats1pfxeqbi 14666 cats1cld 14780 cats1co 14781 s2cld 14796 s2co 14845 ofs2 14896 gsumwspan 18738 frmdgsum 18754 frmdss2 18755 frmdup2 18757 gsumwrev 19263 psgnunilem5 19391 efginvrel2 19624 efgs1 19632 efgsp1 19634 efgredlemd 19641 efgredlemc 19642 efgrelexlemb 19647 vrgpf 19665 vrgpinv 19666 frgpup2 19673 frgpup3lem 19674 frgpnabllem1 19770 pgpfaclem1 19980 tgcgr4 28494 clwlkclwwlk2 29965 clwlkclwwlkfo 29971 clwwlkel 30008 clwwlkfo 30012 clwwlkwwlksb 30016 ccatws1f1olast 32907 s1chn 32965 chnind 32966 chnub 32967 chnccats1 32970 cycpmco2f1 33079 cycpmco2rn 33080 cycpmco2lem2 33082 cycpmco2lem3 33083 cycpmco2lem4 33084 cycpmco2lem5 33085 cycpmco2lem6 33086 cycpmco2lem7 33087 cycpmco2 33088 cyc3genpmlem 33106 elrgspnlem3 33197 unitprodclb 33339 1arithidomlem2 33486 1arithufdlem1 33494 1arithufdlem3 33496 1arithufdlem4 33497 fldext2chn 33697 constrextdg2lem 33717 sseqf 34362 ofcs2 34515 signsvtn 34554 mrsubcv 35485 mrsubff 35487 mrsubrn 35488 mrsubccat 35493 elmrsubrn 35495 mrsubco 35496 mrsubvrs 35497 mvhf 35533 msubvrs 35535 gsumws3 44172 gsumws4 44173 |
| Copyright terms: Public domain | W3C validator |