MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1cld Structured version   Visualization version   GIF version

Theorem s1cld 14555
Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
s1cld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
s1cld (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)

Proof of Theorem s1cld
StepHypRef Expression
1 s1cld.1 . 2 (𝜑𝐴𝐵)
2 s1cl 14554 . 2 (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
31, 2syl 17 1 (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Word cword 14466  ⟨“cs1 14547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-fzo 13629  df-word 14467  df-s1 14548
This theorem is referenced by:  lswccats1fst  14587  ccats1pfxeqbi  14694  cats1cld  14808  cats1co  14809  s2cld  14824  s2co  14873  ofs2  14920  gsumwspan  18767  frmdgsum  18783  frmdss2  18784  frmdup2  18786  gsumwrev  19281  psgnunilem5  19410  efginvrel2  19643  efgs1  19651  efgsp1  19653  efgredlemd  19660  efgredlemc  19661  efgrelexlemb  19666  vrgpf  19684  vrgpinv  19685  frgpup2  19692  frgpup3lem  19693  frgpnabllem1  19789  pgpfaclem1  19999  tgcgr4  28276  clwlkclwwlk2  29751  clwlkclwwlkfo  29757  clwwlkel  29794  clwwlkfo  29798  clwwlkwwlksb  29802  cycpmco2f1  32777  cycpmco2rn  32778  cycpmco2lem2  32780  cycpmco2lem3  32781  cycpmco2lem4  32782  cycpmco2lem5  32783  cycpmco2lem6  32784  cycpmco2lem7  32785  cycpmco2  32786  cyc3genpmlem  32804  sseqf  33911  ofcs2  34076  signsvtn  34115  mrsubcv  35019  mrsubff  35021  mrsubrn  35022  mrsubccat  35027  elmrsubrn  35029  mrsubco  35030  mrsubvrs  35031  mvhf  35067  msubvrs  35069  gsumws3  43498  gsumws4  43499
  Copyright terms: Public domain W3C validator