| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cld | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1cld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| s1cld | ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | s1cl 14567 | . 2 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Word cword 14478 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-word 14479 df-s1 14561 |
| This theorem is referenced by: lswccats1fst 14600 ccats1pfxeqbi 14707 cats1cld 14821 cats1co 14822 s2cld 14837 s2co 14886 ofs2 14937 gsumwspan 18773 frmdgsum 18789 frmdss2 18790 frmdup2 18792 gsumwrev 19298 psgnunilem5 19424 efginvrel2 19657 efgs1 19665 efgsp1 19667 efgredlemd 19674 efgredlemc 19675 efgrelexlemb 19680 vrgpf 19698 vrgpinv 19699 frgpup2 19706 frgpup3lem 19707 frgpnabllem1 19803 pgpfaclem1 20013 tgcgr4 28458 clwlkclwwlk2 29932 clwlkclwwlkfo 29938 clwwlkel 29975 clwwlkfo 29979 clwwlkwwlksb 29983 ccatws1f1olast 32874 s1chn 32936 chnind 32937 chnub 32938 chnccats1 32941 cycpmco2f1 33081 cycpmco2rn 33082 cycpmco2lem2 33084 cycpmco2lem3 33085 cycpmco2lem4 33086 cycpmco2lem5 33087 cycpmco2lem6 33088 cycpmco2lem7 33089 cycpmco2 33090 cyc3genpmlem 33108 elrgspnlem3 33195 unitprodclb 33360 1arithidomlem2 33507 1arithufdlem1 33515 1arithufdlem3 33517 1arithufdlem4 33518 fldext2chn 33718 constrextdg2lem 33738 sseqf 34383 ofcs2 34536 signsvtn 34575 mrsubcv 35497 mrsubff 35499 mrsubrn 35500 mrsubccat 35505 elmrsubrn 35507 mrsubco 35508 mrsubvrs 35509 mvhf 35545 msubvrs 35547 gsumws3 44185 gsumws4 44186 |
| Copyright terms: Public domain | W3C validator |