MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1o Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1o 28729
Description: 𝐹 is a bijection between the two representations of double loops of a fixed positive length on a fixed vertex. (Contributed by AV, 30-May-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
dlwwlknondlwlknonbij.v 𝑉 = (Vtx‘𝐺)
dlwwlknondlwlknonbij.w 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
dlwwlknondlwlknonbij.d 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
dlwwlknondlwlknonf1o.f 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
Assertion
Ref Expression
dlwwlknondlwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto𝐷)
Distinct variable groups:   𝐺,𝑐,𝑤   𝑁,𝑐,𝑤   𝑉,𝑐   𝑊,𝑐   𝑋,𝑐,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑐)   𝐹(𝑤,𝑐)   𝑉(𝑤)   𝑊(𝑤)

Proof of Theorem dlwwlknondlwlknonf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dlwwlknondlwlknonbij.w . . . 4 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
2 df-3an 1088 . . . . 5 (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ↔ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋))
32rabbii 3408 . . . 4 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
41, 3eqtri 2766 . . 3 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
5 eqid 2738 . . 3 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}
6 dlwwlknondlwlknonf1o.f . . 3 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
7 eqid 2738 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
8 eluz2nn 12624 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
9 dlwwlknondlwlknonbij.v . . . . 5 𝑉 = (Vtx‘𝐺)
109, 5, 7clwwlknonclwlknonf1o 28726 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
118, 10syl3an3 1164 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
12 fveq1 6773 . . . . . . 7 (𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐))) → (𝑦‘(𝑁 − 2)) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)))
13123ad2ant3 1134 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑦‘(𝑁 − 2)) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)))
14 2fveq3 6779 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
1514eqeq1d 2740 . . . . . . . . . . . 12 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
16 fveq2 6774 . . . . . . . . . . . . . 14 (𝑤 = 𝑐 → (2nd𝑤) = (2nd𝑐))
1716fveq1d 6776 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → ((2nd𝑤)‘0) = ((2nd𝑐)‘0))
1817eqeq1d 2740 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (((2nd𝑤)‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋))
1915, 18anbi12d 631 . . . . . . . . . . 11 (𝑤 = 𝑐 → (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)))
2019elrab 3624 . . . . . . . . . 10 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)))
21 simplrl 774 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → (♯‘(1st𝑐)) = 𝑁)
22 simpll 764 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → 𝑐 ∈ (ClWalks‘𝐺))
23 simpr3 1195 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → 𝑁 ∈ (ℤ‘2))
2421, 22, 233jca 1127 . . . . . . . . . . 11 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)))
2524ex 413 . . . . . . . . . 10 ((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2))))
2620, 25sylbi 216 . . . . . . . . 9 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2))))
2726impcom 408 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)))
28 dlwwlknondlwlknonf1olem1 28728 . . . . . . . 8 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
2927, 28syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
30293adant3 1131 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3113, 30eqtrd 2778 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑦‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3231eqeq1d 2740 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋))
33 nfv 1917 . . . . 5 𝑤((2nd𝑐)‘(𝑁 − 2)) = 𝑋
3416fveq1d 6776 . . . . . 6 (𝑤 = 𝑐 → ((2nd𝑤)‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3534eqeq1d 2740 . . . . 5 (𝑤 = 𝑐 → (((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋))
3633, 35sbiev 2309 . . . 4 ([𝑐 / 𝑤]((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋)
3732, 36bitr4di 289 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ [𝑐 / 𝑤]((2nd𝑤)‘(𝑁 − 2)) = 𝑋))
384, 5, 6, 7, 11, 37f1ossf1o 7000 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})
39 dlwwlknondlwlknonbij.d . . . 4 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
40 fveq1 6773 . . . . . 6 (𝑤 = 𝑦 → (𝑤‘(𝑁 − 2)) = (𝑦‘(𝑁 − 2)))
4140eqeq1d 2740 . . . . 5 (𝑤 = 𝑦 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑦‘(𝑁 − 2)) = 𝑋))
4241cbvrabv 3426 . . . 4 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}
4339, 42eqtri 2766 . . 3 𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}
44 f1oeq3 6706 . . 3 (𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋} → (𝐹:𝑊1-1-onto𝐷𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}))
4543, 44ax-mp 5 . 2 (𝐹:𝑊1-1-onto𝐷𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})
4638, 45sylibr 233 1 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  [wsb 2067  wcel 2106  {crab 3068  cmpt 5157  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  0cc0 10871  cmin 11205  cn 11973  2c2 12028  cuz 12582  chash 14044   prefix cpfx 14383  Vtxcvtx 27366  USPGraphcuspgr 27518  ClWalkscclwlks 28138  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-uspgr 27520  df-wlks 27966  df-clwlks 28139  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by:  dlwwlknondlwlknonen  28730
  Copyright terms: Public domain W3C validator