MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1o Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1o 29607
Description: 𝐹 is a bijection between the two representations of double loops of a fixed positive length on a fixed vertex. (Contributed by AV, 30-May-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
dlwwlknondlwlknonbij.v 𝑉 = (Vtxβ€˜πΊ)
dlwwlknondlwlknonbij.w π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
dlwwlknondlwlknonbij.d 𝐷 = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}
dlwwlknondlwlknonf1o.f 𝐹 = (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
Assertion
Ref Expression
dlwwlknondlwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ 𝐹:π‘Šβ€“1-1-onto→𝐷)
Distinct variable groups:   𝐺,𝑐,𝑀   𝑁,𝑐,𝑀   𝑉,𝑐   π‘Š,𝑐   𝑋,𝑐,𝑀
Allowed substitution hints:   𝐷(𝑀,𝑐)   𝐹(𝑀,𝑐)   𝑉(𝑀)   π‘Š(𝑀)

Proof of Theorem dlwwlknondlwlknonf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dlwwlknondlwlknonbij.w . . . 4 π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
2 df-3an 1089 . . . . 5 (((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ (((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋))
32rabbii 3438 . . . 4 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
41, 3eqtri 2760 . . 3 π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
5 eqid 2732 . . 3 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
6 dlwwlknondlwlknonf1o.f . . 3 𝐹 = (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
7 eqid 2732 . . 3 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
8 eluz2nn 12864 . . . 4 (𝑁 ∈ (β„€β‰₯β€˜2) β†’ 𝑁 ∈ β„•)
9 dlwwlknondlwlknonbij.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
109, 5, 7clwwlknonclwlknonf1o 29604 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
118, 10syl3an3 1165 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
12 fveq1 6887 . . . . . . 7 (𝑦 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))) β†’ (π‘¦β€˜(𝑁 βˆ’ 2)) = (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜(𝑁 βˆ’ 2)))
13123ad2ant3 1135 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∧ 𝑦 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (π‘¦β€˜(𝑁 βˆ’ 2)) = (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜(𝑁 βˆ’ 2)))
14 2fveq3 6893 . . . . . . . . . . . . 13 (𝑀 = 𝑐 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘)))
1514eqeq1d 2734 . . . . . . . . . . . 12 (𝑀 = 𝑐 β†’ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
16 fveq2 6888 . . . . . . . . . . . . . 14 (𝑀 = 𝑐 β†’ (2nd β€˜π‘€) = (2nd β€˜π‘))
1716fveq1d 6890 . . . . . . . . . . . . 13 (𝑀 = 𝑐 β†’ ((2nd β€˜π‘€)β€˜0) = ((2nd β€˜π‘)β€˜0))
1817eqeq1d 2734 . . . . . . . . . . . 12 (𝑀 = 𝑐 β†’ (((2nd β€˜π‘€)β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
1915, 18anbi12d 631 . . . . . . . . . . 11 (𝑀 = 𝑐 β†’ (((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ↔ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)))
2019elrab 3682 . . . . . . . . . 10 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)))
21 simplrl 775 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2))) β†’ (β™―β€˜(1st β€˜π‘)) = 𝑁)
22 simpll 765 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2))) β†’ 𝑐 ∈ (ClWalksβ€˜πΊ))
23 simpr3 1196 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2))) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
2421, 22, 233jca 1128 . . . . . . . . . . 11 (((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2))) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ 𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 𝑁 ∈ (β„€β‰₯β€˜2)))
2524ex 413 . . . . . . . . . 10 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)) β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ 𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 𝑁 ∈ (β„€β‰₯β€˜2))))
2620, 25sylbi 216 . . . . . . . . 9 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ 𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 𝑁 ∈ (β„€β‰₯β€˜2))))
2726impcom 408 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ 𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 𝑁 ∈ (β„€β‰₯β€˜2)))
28 dlwwlknondlwlknonf1olem1 29606 . . . . . . . 8 (((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ 𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜(𝑁 βˆ’ 2)) = ((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)))
2927, 28syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜(𝑁 βˆ’ 2)) = ((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)))
30293adant3 1132 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∧ 𝑦 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜(𝑁 βˆ’ 2)) = ((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)))
3113, 30eqtrd 2772 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∧ 𝑦 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (π‘¦β€˜(𝑁 βˆ’ 2)) = ((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)))
3231eqeq1d 2734 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∧ 𝑦 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ ((π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋 ↔ ((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)) = 𝑋))
33 nfv 1917 . . . . 5 Ⅎ𝑀((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)) = 𝑋
3416fveq1d 6890 . . . . . 6 (𝑀 = 𝑐 β†’ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = ((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)))
3534eqeq1d 2734 . . . . 5 (𝑀 = 𝑐 β†’ (((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋 ↔ ((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)) = 𝑋))
3633, 35sbiev 2308 . . . 4 ([𝑐 / 𝑀]((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋 ↔ ((2nd β€˜π‘)β€˜(𝑁 βˆ’ 2)) = 𝑋)
3732, 36bitr4di 288 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∧ 𝑦 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ ((π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋 ↔ [𝑐 / 𝑀]((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋))
384, 5, 6, 7, 11, 37f1ossf1o 7122 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑦 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋})
39 dlwwlknondlwlknonbij.d . . . 4 𝐷 = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}
40 fveq1 6887 . . . . . 6 (𝑀 = 𝑦 β†’ (π‘€β€˜(𝑁 βˆ’ 2)) = (π‘¦β€˜(𝑁 βˆ’ 2)))
4140eqeq1d 2734 . . . . 5 (𝑀 = 𝑦 β†’ ((π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋 ↔ (π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋))
4241cbvrabv 3442 . . . 4 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} = {𝑦 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋}
4339, 42eqtri 2760 . . 3 𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋}
44 f1oeq3 6820 . . 3 (𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋} β†’ (𝐹:π‘Šβ€“1-1-onto→𝐷 ↔ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑦 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋}))
4543, 44ax-mp 5 . 2 (𝐹:π‘Šβ€“1-1-onto→𝐷 ↔ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑦 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘¦β€˜(𝑁 βˆ’ 2)) = 𝑋})
4638, 45sylibr 233 1 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ 𝐹:π‘Šβ€“1-1-onto→𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  [wsb 2067   ∈ wcel 2106  {crab 3432   ↦ cmpt 5230  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  0cc0 11106   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  β„€β‰₯cuz 12818  β™―chash 14286   prefix cpfx 14616  Vtxcvtx 28245  USPGraphcuspgr 28397  ClWalkscclwlks 29016  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-uspgr 28399  df-wlks 28845  df-clwlks 29017  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  dlwwlknondlwlknonen  29608
  Copyright terms: Public domain W3C validator