| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dlwwlknondlwlknonbij.w | . . . 4
⊢ 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋 ∧ ((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋)} | 
| 2 |  | df-3an 1088 | . . . . 5
⊢
(((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋) ↔ (((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋) ∧ ((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋)) | 
| 3 | 2 | rabbii 3441 | . . . 4
⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋) ∧ ((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋)} | 
| 4 | 1, 3 | eqtri 2764 | . . 3
⊢ 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋) ∧ ((2nd
‘𝑤)‘(𝑁 − 2)) = 𝑋)} | 
| 5 |  | eqid 2736 | . . 3
⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋)} | 
| 6 |  | dlwwlknondlwlknonf1o.f | . . 3
⊢ 𝐹 = (𝑐 ∈ 𝑊 ↦ ((2nd ‘𝑐) prefix
(♯‘(1st ‘𝑐)))) | 
| 7 |  | eqid 2736 | . . 3
⊢ (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋)} ↦ ((2nd
‘𝑐) prefix
(♯‘(1st ‘𝑐)))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋)} ↦ ((2nd
‘𝑐) prefix
(♯‘(1st ‘𝑐)))) | 
| 8 |  | eluz2nn 12925 | . . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) | 
| 9 |  | dlwwlknondlwlknonbij.v | . . . . 5
⊢ 𝑉 = (Vtx‘𝐺) | 
| 10 | 9, 5, 7 | clwwlknonclwlknonf1o 30382 | . . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋)} ↦ ((2nd
‘𝑐) prefix
(♯‘(1st ‘𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) | 
| 11 | 8, 10 | syl3an3 1165 | . . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ↦ ((2nd ‘𝑐) prefix
(♯‘(1st ‘𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) | 
| 12 |  | fveq1 6904 | . . . . . . 7
⊢ (𝑦 = ((2nd ‘𝑐) prefix
(♯‘(1st ‘𝑐))) → (𝑦‘(𝑁 − 2)) = (((2nd
‘𝑐) prefix
(♯‘(1st ‘𝑐)))‘(𝑁 − 2))) | 
| 13 | 12 | 3ad2ant3 1135 | . . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd ‘𝑐) prefix (♯‘(1st
‘𝑐)))) → (𝑦‘(𝑁 − 2)) = (((2nd
‘𝑐) prefix
(♯‘(1st ‘𝑐)))‘(𝑁 − 2))) | 
| 14 |  | 2fveq3 6910 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑐 → (♯‘(1st
‘𝑤)) =
(♯‘(1st ‘𝑐))) | 
| 15 | 14 | eqeq1d 2738 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑐 → ((♯‘(1st
‘𝑤)) = 𝑁 ↔
(♯‘(1st ‘𝑐)) = 𝑁)) | 
| 16 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑐 → (2nd ‘𝑤) = (2nd ‘𝑐)) | 
| 17 | 16 | fveq1d 6907 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑐 → ((2nd ‘𝑤)‘0) = ((2nd
‘𝑐)‘0)) | 
| 18 | 17 | eqeq1d 2738 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑐 → (((2nd ‘𝑤)‘0) = 𝑋 ↔ ((2nd ‘𝑐)‘0) = 𝑋)) | 
| 19 | 15, 18 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑐 → (((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋) ↔
((♯‘(1st ‘𝑐)) = 𝑁 ∧ ((2nd ‘𝑐)‘0) = 𝑋))) | 
| 20 | 19 | elrab 3691 | . . . . . . . . . 10
⊢ (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋)} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st
‘𝑐)) = 𝑁 ∧ ((2nd
‘𝑐)‘0) = 𝑋))) | 
| 21 |  | simplrl 776 | . . . . . . . . . . . 12
⊢ (((𝑐 ∈ (ClWalks‘𝐺) ∧
((♯‘(1st ‘𝑐)) = 𝑁 ∧ ((2nd ‘𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)))
→ (♯‘(1st ‘𝑐)) = 𝑁) | 
| 22 |  | simpll 766 | . . . . . . . . . . . 12
⊢ (((𝑐 ∈ (ClWalks‘𝐺) ∧
((♯‘(1st ‘𝑐)) = 𝑁 ∧ ((2nd ‘𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)))
→ 𝑐 ∈
(ClWalks‘𝐺)) | 
| 23 |  | simpr3 1196 | . . . . . . . . . . . 12
⊢ (((𝑐 ∈ (ClWalks‘𝐺) ∧
((♯‘(1st ‘𝑐)) = 𝑁 ∧ ((2nd ‘𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)))
→ 𝑁 ∈
(ℤ≥‘2)) | 
| 24 | 21, 22, 23 | 3jca 1128 | . . . . . . . . . . 11
⊢ (((𝑐 ∈ (ClWalks‘𝐺) ∧
((♯‘(1st ‘𝑐)) = 𝑁 ∧ ((2nd ‘𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)))
→ ((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈
(ℤ≥‘2))) | 
| 25 | 24 | ex 412 | . . . . . . . . . 10
⊢ ((𝑐 ∈ (ClWalks‘𝐺) ∧
((♯‘(1st ‘𝑐)) = 𝑁 ∧ ((2nd ‘𝑐)‘0) = 𝑋)) → ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈
(ℤ≥‘2)))) | 
| 26 | 20, 25 | sylbi 217 | . . . . . . . . 9
⊢ (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st
‘𝑤)) = 𝑁 ∧ ((2nd
‘𝑤)‘0) = 𝑋)} → ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈
(ℤ≥‘2)))) | 
| 27 | 26 | impcom 407 | . . . . . . . 8
⊢ (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) → ((♯‘(1st
‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈
(ℤ≥‘2))) | 
| 28 |  | dlwwlknondlwlknonf1olem1 30384 | . . . . . . . 8
⊢
(((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (((2nd ‘𝑐) prefix (♯‘(1st
‘𝑐)))‘(𝑁 − 2)) = ((2nd
‘𝑐)‘(𝑁 − 2))) | 
| 29 | 27, 28 | syl 17 | . . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) → (((2nd ‘𝑐) prefix
(♯‘(1st ‘𝑐)))‘(𝑁 − 2)) = ((2nd ‘𝑐)‘(𝑁 − 2))) | 
| 30 | 29 | 3adant3 1132 | . . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd ‘𝑐) prefix (♯‘(1st
‘𝑐)))) →
(((2nd ‘𝑐)
prefix (♯‘(1st ‘𝑐)))‘(𝑁 − 2)) = ((2nd ‘𝑐)‘(𝑁 − 2))) | 
| 31 | 13, 30 | eqtrd 2776 | . . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd ‘𝑐) prefix (♯‘(1st
‘𝑐)))) → (𝑦‘(𝑁 − 2)) = ((2nd ‘𝑐)‘(𝑁 − 2))) | 
| 32 | 31 | eqeq1d 2738 | . . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd ‘𝑐) prefix (♯‘(1st
‘𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ ((2nd ‘𝑐)‘(𝑁 − 2)) = 𝑋)) | 
| 33 |  | nfv 1913 | . . . . 5
⊢
Ⅎ𝑤((2nd ‘𝑐)‘(𝑁 − 2)) = 𝑋 | 
| 34 | 16 | fveq1d 6907 | . . . . . 6
⊢ (𝑤 = 𝑐 → ((2nd ‘𝑤)‘(𝑁 − 2)) = ((2nd ‘𝑐)‘(𝑁 − 2))) | 
| 35 | 34 | eqeq1d 2738 | . . . . 5
⊢ (𝑤 = 𝑐 → (((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd ‘𝑐)‘(𝑁 − 2)) = 𝑋)) | 
| 36 | 33, 35 | sbiev 2313 | . . . 4
⊢ ([𝑐 / 𝑤]((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd ‘𝑐)‘(𝑁 − 2)) = 𝑋) | 
| 37 | 32, 36 | bitr4di 289 | . . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣
((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd ‘𝑐) prefix (♯‘(1st
‘𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ [𝑐 / 𝑤]((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)) | 
| 38 | 4, 5, 6, 7, 11, 37 | f1ossf1o 7147 | . 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ 𝐹:𝑊–1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}) | 
| 39 |  | dlwwlknondlwlknonbij.d | . . . 4
⊢ 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} | 
| 40 |  | fveq1 6904 | . . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤‘(𝑁 − 2)) = (𝑦‘(𝑁 − 2))) | 
| 41 | 40 | eqeq1d 2738 | . . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑦‘(𝑁 − 2)) = 𝑋)) | 
| 42 | 41 | cbvrabv 3446 | . . . 4
⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋} | 
| 43 | 39, 42 | eqtri 2764 | . . 3
⊢ 𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋} | 
| 44 |  | f1oeq3 6837 | . . 3
⊢ (𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋} → (𝐹:𝑊–1-1-onto→𝐷 ↔ 𝐹:𝑊–1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})) | 
| 45 | 43, 44 | ax-mp 5 | . 2
⊢ (𝐹:𝑊–1-1-onto→𝐷 ↔ 𝐹:𝑊–1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}) | 
| 46 | 38, 45 | sylibr 234 | 1
⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ 𝐹:𝑊–1-1-onto→𝐷) |