MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1o Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1o 28725
Description: 𝐹 is a bijection between the two representations of double loops of a fixed positive length on a fixed vertex. (Contributed by AV, 30-May-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
dlwwlknondlwlknonbij.v 𝑉 = (Vtx‘𝐺)
dlwwlknondlwlknonbij.w 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
dlwwlknondlwlknonbij.d 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
dlwwlknondlwlknonf1o.f 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
Assertion
Ref Expression
dlwwlknondlwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto𝐷)
Distinct variable groups:   𝐺,𝑐,𝑤   𝑁,𝑐,𝑤   𝑉,𝑐   𝑊,𝑐   𝑋,𝑐,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑐)   𝐹(𝑤,𝑐)   𝑉(𝑤)   𝑊(𝑤)

Proof of Theorem dlwwlknondlwlknonf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dlwwlknondlwlknonbij.w . . . 4 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
2 df-3an 1088 . . . . 5 (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ↔ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋))
32rabbii 3406 . . . 4 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
41, 3eqtri 2768 . . 3 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
5 eqid 2740 . . 3 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}
6 dlwwlknondlwlknonf1o.f . . 3 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
7 eqid 2740 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
8 eluz2nn 12623 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
9 dlwwlknondlwlknonbij.v . . . . 5 𝑉 = (Vtx‘𝐺)
109, 5, 7clwwlknonclwlknonf1o 28722 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
118, 10syl3an3 1164 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
12 fveq1 6770 . . . . . . 7 (𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐))) → (𝑦‘(𝑁 − 2)) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)))
13123ad2ant3 1134 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑦‘(𝑁 − 2)) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)))
14 2fveq3 6776 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
1514eqeq1d 2742 . . . . . . . . . . . 12 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
16 fveq2 6771 . . . . . . . . . . . . . 14 (𝑤 = 𝑐 → (2nd𝑤) = (2nd𝑐))
1716fveq1d 6773 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → ((2nd𝑤)‘0) = ((2nd𝑐)‘0))
1817eqeq1d 2742 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (((2nd𝑤)‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋))
1915, 18anbi12d 631 . . . . . . . . . . 11 (𝑤 = 𝑐 → (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)))
2019elrab 3626 . . . . . . . . . 10 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)))
21 simplrl 774 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → (♯‘(1st𝑐)) = 𝑁)
22 simpll 764 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → 𝑐 ∈ (ClWalks‘𝐺))
23 simpr3 1195 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → 𝑁 ∈ (ℤ‘2))
2421, 22, 233jca 1127 . . . . . . . . . . 11 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)))
2524ex 413 . . . . . . . . . 10 ((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2))))
2620, 25sylbi 216 . . . . . . . . 9 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2))))
2726impcom 408 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)))
28 dlwwlknondlwlknonf1olem1 28724 . . . . . . . 8 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
2927, 28syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
30293adant3 1131 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3113, 30eqtrd 2780 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑦‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3231eqeq1d 2742 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋))
33 nfv 1921 . . . . 5 𝑤((2nd𝑐)‘(𝑁 − 2)) = 𝑋
3416fveq1d 6773 . . . . . 6 (𝑤 = 𝑐 → ((2nd𝑤)‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3534eqeq1d 2742 . . . . 5 (𝑤 = 𝑐 → (((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋))
3633, 35sbiev 2313 . . . 4 ([𝑐 / 𝑤]((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋)
3732, 36bitr4di 289 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ [𝑐 / 𝑤]((2nd𝑤)‘(𝑁 − 2)) = 𝑋))
384, 5, 6, 7, 11, 37f1ossf1o 6997 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})
39 dlwwlknondlwlknonbij.d . . . 4 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
40 fveq1 6770 . . . . . 6 (𝑤 = 𝑦 → (𝑤‘(𝑁 − 2)) = (𝑦‘(𝑁 − 2)))
4140eqeq1d 2742 . . . . 5 (𝑤 = 𝑦 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑦‘(𝑁 − 2)) = 𝑋))
4241cbvrabv 3425 . . . 4 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}
4339, 42eqtri 2768 . . 3 𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}
44 f1oeq3 6704 . . 3 (𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋} → (𝐹:𝑊1-1-onto𝐷𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}))
4543, 44ax-mp 5 . 2 (𝐹:𝑊1-1-onto𝐷𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})
4638, 45sylibr 233 1 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  [wsb 2071  wcel 2110  {crab 3070  cmpt 5162  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  1st c1st 7822  2nd c2nd 7823  0cc0 10872  cmin 11205  cn 11973  2c2 12028  cuz 12581  chash 14042   prefix cpfx 14381  Vtxcvtx 27364  USPGraphcuspgr 27516  ClWalkscclwlks 28134  ClWWalksNOncclwwlknon 28447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-fzo 13382  df-hash 14043  df-word 14216  df-lsw 14264  df-concat 14272  df-s1 14299  df-substr 14352  df-pfx 14382  df-edg 27416  df-uhgr 27426  df-upgr 27450  df-uspgr 27518  df-wlks 27964  df-clwlks 28135  df-clwwlk 28342  df-clwwlkn 28385  df-clwwlknon 28448
This theorem is referenced by:  dlwwlknondlwlknonen  28726
  Copyright terms: Public domain W3C validator