MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1o Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1o 30385
Description: 𝐹 is a bijection between the two representations of double loops of a fixed positive length on a fixed vertex. (Contributed by AV, 30-May-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
dlwwlknondlwlknonbij.v 𝑉 = (Vtx‘𝐺)
dlwwlknondlwlknonbij.w 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
dlwwlknondlwlknonbij.d 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
dlwwlknondlwlknonf1o.f 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
Assertion
Ref Expression
dlwwlknondlwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto𝐷)
Distinct variable groups:   𝐺,𝑐,𝑤   𝑁,𝑐,𝑤   𝑉,𝑐   𝑊,𝑐   𝑋,𝑐,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑐)   𝐹(𝑤,𝑐)   𝑉(𝑤)   𝑊(𝑤)

Proof of Theorem dlwwlknondlwlknonf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dlwwlknondlwlknonbij.w . . . 4 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
2 df-3an 1088 . . . . 5 (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ↔ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋))
32rabbii 3441 . . . 4 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
41, 3eqtri 2764 . . 3 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
5 eqid 2736 . . 3 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}
6 dlwwlknondlwlknonf1o.f . . 3 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
7 eqid 2736 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
8 eluz2nn 12925 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
9 dlwwlknondlwlknonbij.v . . . . 5 𝑉 = (Vtx‘𝐺)
109, 5, 7clwwlknonclwlknonf1o 30382 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
118, 10syl3an3 1165 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
12 fveq1 6904 . . . . . . 7 (𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐))) → (𝑦‘(𝑁 − 2)) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)))
13123ad2ant3 1135 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑦‘(𝑁 − 2)) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)))
14 2fveq3 6910 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
1514eqeq1d 2738 . . . . . . . . . . . 12 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
16 fveq2 6905 . . . . . . . . . . . . . 14 (𝑤 = 𝑐 → (2nd𝑤) = (2nd𝑐))
1716fveq1d 6907 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → ((2nd𝑤)‘0) = ((2nd𝑐)‘0))
1817eqeq1d 2738 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (((2nd𝑤)‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋))
1915, 18anbi12d 632 . . . . . . . . . . 11 (𝑤 = 𝑐 → (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)))
2019elrab 3691 . . . . . . . . . 10 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)))
21 simplrl 776 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → (♯‘(1st𝑐)) = 𝑁)
22 simpll 766 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → 𝑐 ∈ (ClWalks‘𝐺))
23 simpr3 1196 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → 𝑁 ∈ (ℤ‘2))
2421, 22, 233jca 1128 . . . . . . . . . . 11 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)))
2524ex 412 . . . . . . . . . 10 ((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2))))
2620, 25sylbi 217 . . . . . . . . 9 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2))))
2726impcom 407 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)))
28 dlwwlknondlwlknonf1olem1 30384 . . . . . . . 8 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
2927, 28syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
30293adant3 1132 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3113, 30eqtrd 2776 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑦‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3231eqeq1d 2738 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋))
33 nfv 1913 . . . . 5 𝑤((2nd𝑐)‘(𝑁 − 2)) = 𝑋
3416fveq1d 6907 . . . . . 6 (𝑤 = 𝑐 → ((2nd𝑤)‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3534eqeq1d 2738 . . . . 5 (𝑤 = 𝑐 → (((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋))
3633, 35sbiev 2313 . . . 4 ([𝑐 / 𝑤]((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋)
3732, 36bitr4di 289 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ [𝑐 / 𝑤]((2nd𝑤)‘(𝑁 − 2)) = 𝑋))
384, 5, 6, 7, 11, 37f1ossf1o 7147 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})
39 dlwwlknondlwlknonbij.d . . . 4 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
40 fveq1 6904 . . . . . 6 (𝑤 = 𝑦 → (𝑤‘(𝑁 − 2)) = (𝑦‘(𝑁 − 2)))
4140eqeq1d 2738 . . . . 5 (𝑤 = 𝑦 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑦‘(𝑁 − 2)) = 𝑋))
4241cbvrabv 3446 . . . 4 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}
4339, 42eqtri 2764 . . 3 𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}
44 f1oeq3 6837 . . 3 (𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋} → (𝐹:𝑊1-1-onto𝐷𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}))
4543, 44ax-mp 5 . 2 (𝐹:𝑊1-1-onto𝐷𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})
4638, 45sylibr 234 1 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  [wsb 2063  wcel 2107  {crab 3435  cmpt 5224  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  1st c1st 8013  2nd c2nd 8014  0cc0 11156  cmin 11493  cn 12267  2c2 12322  cuz 12879  chash 14370   prefix cpfx 14709  Vtxcvtx 29014  USPGraphcuspgr 29166  ClWalkscclwlks 29791  ClWWalksNOncclwwlknon 30107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-edg 29066  df-uhgr 29076  df-upgr 29100  df-uspgr 29168  df-wlks 29618  df-clwlks 29792  df-clwwlk 30002  df-clwwlkn 30045  df-clwwlknon 30108
This theorem is referenced by:  dlwwlknondlwlknonen  30386
  Copyright terms: Public domain W3C validator