MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlwwlknondlwlknonf1o Structured version   Visualization version   GIF version

Theorem dlwwlknondlwlknonf1o 28146
Description: 𝐹 is a bijection between the two representations of double loops of a fixed positive length on a fixed vertex. (Contributed by AV, 30-May-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
dlwwlknondlwlknonbij.v 𝑉 = (Vtx‘𝐺)
dlwwlknondlwlknonbij.w 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
dlwwlknondlwlknonbij.d 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
dlwwlknondlwlknonf1o.f 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
Assertion
Ref Expression
dlwwlknondlwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto𝐷)
Distinct variable groups:   𝐺,𝑐,𝑤   𝑁,𝑐,𝑤   𝑉,𝑐   𝑊,𝑐   𝑋,𝑐,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑐)   𝐹(𝑤,𝑐)   𝑉(𝑤)   𝑊(𝑤)

Proof of Theorem dlwwlknondlwlknonf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dlwwlknondlwlknonbij.w . . . 4 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
2 df-3an 1085 . . . . 5 (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ↔ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋))
32rabbii 3475 . . . 4 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
41, 3eqtri 2846 . . 3 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
5 eqid 2823 . . 3 {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}
6 dlwwlknondlwlknonf1o.f . . 3 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
7 eqid 2823 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
8 eluz2nn 12287 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
9 dlwwlknondlwlknonbij.v . . . . 5 𝑉 = (Vtx‘𝐺)
109, 5, 7clwwlknonclwlknonf1o 28143 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
118, 10syl3an3 1161 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
12 fveq1 6671 . . . . . . 7 (𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐))) → (𝑦‘(𝑁 − 2)) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)))
13123ad2ant3 1131 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑦‘(𝑁 − 2)) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)))
14 2fveq3 6677 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
1514eqeq1d 2825 . . . . . . . . . . . 12 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
16 fveq2 6672 . . . . . . . . . . . . . 14 (𝑤 = 𝑐 → (2nd𝑤) = (2nd𝑐))
1716fveq1d 6674 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → ((2nd𝑤)‘0) = ((2nd𝑐)‘0))
1817eqeq1d 2825 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (((2nd𝑤)‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋))
1915, 18anbi12d 632 . . . . . . . . . . 11 (𝑤 = 𝑐 → (((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)))
2019elrab 3682 . . . . . . . . . 10 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)))
21 simplrl 775 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → (♯‘(1st𝑐)) = 𝑁)
22 simpll 765 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → 𝑐 ∈ (ClWalks‘𝐺))
23 simpr3 1192 . . . . . . . . . . . 12 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → 𝑁 ∈ (ℤ‘2))
2421, 22, 233jca 1124 . . . . . . . . . . 11 (((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2))) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)))
2524ex 415 . . . . . . . . . 10 ((𝑐 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑐)) = 𝑁 ∧ ((2nd𝑐)‘0) = 𝑋)) → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2))))
2620, 25sylbi 219 . . . . . . . . 9 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2))))
2726impcom 410 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}) → ((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)))
28 dlwwlknondlwlknonf1olem1 28145 . . . . . . . 8 (((♯‘(1st𝑐)) = 𝑁𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ‘2)) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
2927, 28syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
30293adant3 1128 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3113, 30eqtrd 2858 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑦‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3231eqeq1d 2825 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋))
33 nfv 1915 . . . . 5 𝑤((2nd𝑐)‘(𝑁 − 2)) = 𝑋
3416fveq1d 6674 . . . . . 6 (𝑤 = 𝑐 → ((2nd𝑤)‘(𝑁 − 2)) = ((2nd𝑐)‘(𝑁 − 2)))
3534eqeq1d 2825 . . . . 5 (𝑤 = 𝑐 → (((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋))
3633, 35sbiev 2330 . . . 4 ([𝑐 / 𝑤]((2nd𝑤)‘(𝑁 − 2)) = 𝑋 ↔ ((2nd𝑐)‘(𝑁 − 2)) = 𝑋)
3732, 36syl6bbr 291 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)} ∧ 𝑦 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑦‘(𝑁 − 2)) = 𝑋 ↔ [𝑐 / 𝑤]((2nd𝑤)‘(𝑁 − 2)) = 𝑋))
384, 5, 6, 7, 11, 37f1ossf1o 6892 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})
39 dlwwlknondlwlknonbij.d . . . 4 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
40 fveq1 6671 . . . . . 6 (𝑤 = 𝑦 → (𝑤‘(𝑁 − 2)) = (𝑦‘(𝑁 − 2)))
4140eqeq1d 2825 . . . . 5 (𝑤 = 𝑦 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑦‘(𝑁 − 2)) = 𝑋))
4241cbvrabv 3493 . . . 4 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}
4339, 42eqtri 2846 . . 3 𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}
44 f1oeq3 6608 . . 3 (𝐷 = {𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋} → (𝐹:𝑊1-1-onto𝐷𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋}))
4543, 44ax-mp 5 . 2 (𝐹:𝑊1-1-onto𝐷𝐹:𝑊1-1-onto→{𝑦 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑦‘(𝑁 − 2)) = 𝑋})
4638, 45sylibr 236 1 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐹:𝑊1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  [wsb 2069  wcel 2114  {crab 3144  cmpt 5148  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  0cc0 10539  cmin 10872  cn 11640  2c2 11695  cuz 12246  chash 13693   prefix cpfx 14034  Vtxcvtx 26783  USPGraphcuspgr 26935  ClWalkscclwlks 27553  ClWWalksNOncclwwlknon 27868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-edg 26835  df-uhgr 26845  df-upgr 26869  df-uspgr 26937  df-wlks 27383  df-clwlks 27554  df-clwwlk 27762  df-clwwlkn 27805  df-clwwlknon 27869
This theorem is referenced by:  dlwwlknondlwlknonen  28147
  Copyright terms: Public domain W3C validator