MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonclwlknonf1o Structured version   Visualization version   GIF version

Theorem clwwlknonclwlknonf1o 30228
Description: 𝐹 is a bijection between the two representations of closed walks of a fixed positive length on a fixed vertex. (Contributed by AV, 26-May-2022.) (Proof shortened by AV, 7-Aug-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlknonclwlknonf1o.v 𝑉 = (Vtxβ€˜πΊ)
clwwlknonclwlknonf1o.w π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
clwwlknonclwlknonf1o.f 𝐹 = (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
Assertion
Ref Expression
clwwlknonclwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝐹:π‘Šβ€“1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
Distinct variable groups:   𝐺,𝑐,𝑀   𝑁,𝑐,𝑀   𝑉,𝑐   π‘Š,𝑐   𝑋,𝑐,𝑀
Allowed substitution hints:   𝐹(𝑀,𝑐)   𝑉(𝑀)   π‘Š(𝑀)

Proof of Theorem clwwlknonclwlknonf1o
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 clwwlknonclwlknonf1o.w . . 3 π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
2 eqid 2725 . . 3 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}
3 clwwlknonclwlknonf1o.f . . 3 𝐹 = (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
4 eqid 2725 . . 3 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
5 eqid 2725 . . . . 5 (1st β€˜π‘) = (1st β€˜π‘)
6 eqid 2725 . . . . 5 (2nd β€˜π‘) = (2nd β€˜π‘)
75, 6, 2, 4clwlknf1oclwwlkn 29950 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
873adant2 1128 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
9 fveq1 6893 . . . . . . 7 (𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))) β†’ (π‘ β€˜0) = (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0))
1093ad2ant3 1132 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (π‘ β€˜0) = (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0))
11 2fveq3 6899 . . . . . . . . . . . 12 (𝑀 = 𝑐 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘)))
1211eqeq1d 2727 . . . . . . . . . . 11 (𝑀 = 𝑐 β†’ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
1312elrab 3680 . . . . . . . . . 10 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁))
14 clwlkwlk 29645 . . . . . . . . . . . 12 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ 𝑐 ∈ (Walksβ€˜πΊ))
15 wlkcpr 29499 . . . . . . . . . . . . 13 (𝑐 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘))
16 eqid 2725 . . . . . . . . . . . . . . . . 17 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
1716wlkpwrd 29487 . . . . . . . . . . . . . . . 16 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ))
18173ad2ant1 1130 . . . . . . . . . . . . . . 15 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ))
19 elnnuz 12896 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„• ↔ 𝑁 ∈ (β„€β‰₯β€˜1))
20 eluzfz2 13541 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (β„€β‰₯β€˜1) β†’ 𝑁 ∈ (1...𝑁))
2119, 20sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„• β†’ 𝑁 ∈ (1...𝑁))
22 fzelp1 13585 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...𝑁) β†’ 𝑁 ∈ (1...(𝑁 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„• β†’ 𝑁 ∈ (1...(𝑁 + 1)))
24233ad2ant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ (1...(𝑁 + 1)))
25243ad2ant3 1132 . . . . . . . . . . . . . . . . 17 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ 𝑁 ∈ (1...(𝑁 + 1)))
26 id 22 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ (β™―β€˜(1st β€˜π‘)) = 𝑁)
27 oveq1 7424 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((β™―β€˜(1st β€˜π‘)) + 1) = (𝑁 + 1))
2827oveq2d 7433 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ (1...((β™―β€˜(1st β€˜π‘)) + 1)) = (1...(𝑁 + 1)))
2926, 28eleq12d 2819 . . . . . . . . . . . . . . . . . 18 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
30293ad2ant2 1131 . . . . . . . . . . . . . . . . 17 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3125, 30mpbird 256 . . . . . . . . . . . . . . . 16 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1)))
32 wlklenvp1 29488 . . . . . . . . . . . . . . . . . . 19 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(2nd β€˜π‘)) = ((β™―β€˜(1st β€˜π‘)) + 1))
3332oveq2d 7433 . . . . . . . . . . . . . . . . . 18 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (1...(β™―β€˜(2nd β€˜π‘))) = (1...((β™―β€˜(1st β€˜π‘)) + 1)))
3433eleq2d 2811 . . . . . . . . . . . . . . . . 17 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ ((β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))) ↔ (β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1))))
35343ad2ant1 1130 . . . . . . . . . . . . . . . 16 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))) ↔ (β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1))))
3631, 35mpbird 256 . . . . . . . . . . . . . . 15 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))))
3718, 36jca 510 . . . . . . . . . . . . . 14 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))
38373exp 1116 . . . . . . . . . . . . 13 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))))
3915, 38sylbi 216 . . . . . . . . . . . 12 (𝑐 ∈ (Walksβ€˜πΊ) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))))
4014, 39syl 17 . . . . . . . . . . 11 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))))
4140imp 405 . . . . . . . . . 10 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))))))
4213, 41sylbi 216 . . . . . . . . 9 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))))))
4342impcom 406 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))
44 pfxfv0 14674 . . . . . . . 8 (((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0) = ((2nd β€˜π‘)β€˜0))
4543, 44syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0) = ((2nd β€˜π‘)β€˜0))
46453adant3 1129 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0) = ((2nd β€˜π‘)β€˜0))
4710, 46eqtrd 2765 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (π‘ β€˜0) = ((2nd β€˜π‘)β€˜0))
4847eqeq1d 2727 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ ((π‘ β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
49 nfv 1909 . . . . 5 Ⅎ𝑀((2nd β€˜π‘)β€˜0) = 𝑋
50 fveq2 6894 . . . . . . 7 (𝑀 = 𝑐 β†’ (2nd β€˜π‘€) = (2nd β€˜π‘))
5150fveq1d 6896 . . . . . 6 (𝑀 = 𝑐 β†’ ((2nd β€˜π‘€)β€˜0) = ((2nd β€˜π‘)β€˜0))
5251eqeq1d 2727 . . . . 5 (𝑀 = 𝑐 β†’ (((2nd β€˜π‘€)β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
5349, 52sbiev 2303 . . . 4 ([𝑐 / 𝑀]((2nd β€˜π‘€)β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋)
5448, 53bitr4di 288 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ ((π‘ β€˜0) = 𝑋 ↔ [𝑐 / 𝑀]((2nd β€˜π‘€)β€˜0) = 𝑋))
551, 2, 3, 4, 8, 54f1ossf1o 7135 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋})
56 clwwlknon 29956 . . 3 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋}
57 f1oeq3 6826 . . 3 ((𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋} β†’ (𝐹:π‘Šβ€“1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋}))
5856, 57ax-mp 5 . 2 (𝐹:π‘Šβ€“1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋})
5955, 58sylibr 233 1 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝐹:π‘Šβ€“1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533  [wsb 2059   ∈ wcel 2098  {crab 3419   class class class wbr 5148   ↦ cmpt 5231  β€“1-1-ontoβ†’wf1o 6546  β€˜cfv 6547  (class class class)co 7417  1st c1st 7990  2nd c2nd 7991  0cc0 11138  1c1 11139   + caddc 11141  β„•cn 12242  β„€β‰₯cuz 12852  ...cfz 13516  β™―chash 14321  Word cword 14496   prefix cpfx 14652  Vtxcvtx 28865  USPGraphcuspgr 29017  Walkscwlks 29466  ClWalkscclwlks 29640   ClWWalksN cclwwlkn 29890  ClWWalksNOncclwwlknon 29953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-edg 28917  df-uhgr 28927  df-upgr 28951  df-uspgr 29019  df-wlks 29469  df-clwlks 29641  df-clwwlk 29848  df-clwwlkn 29891  df-clwwlknon 29954
This theorem is referenced by:  clwwlknonclwlknonen  30229  dlwwlknondlwlknonf1o  30231
  Copyright terms: Public domain W3C validator