MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonclwlknonf1o Structured version   Visualization version   GIF version

Theorem clwwlknonclwlknonf1o 28627
Description: 𝐹 is a bijection between the two representations of closed walks of a fixed positive length on a fixed vertex. (Contributed by AV, 26-May-2022.) (Proof shortened by AV, 7-Aug-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlknonclwlknonf1o.v 𝑉 = (Vtx‘𝐺)
clwwlknonclwlknonf1o.w 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}
clwwlknonclwlknonf1o.f 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
Assertion
Ref Expression
clwwlknonclwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝐹:𝑊1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝐺,𝑐,𝑤   𝑁,𝑐,𝑤   𝑉,𝑐   𝑊,𝑐   𝑋,𝑐,𝑤
Allowed substitution hints:   𝐹(𝑤,𝑐)   𝑉(𝑤)   𝑊(𝑤)

Proof of Theorem clwwlknonclwlknonf1o
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 clwwlknonclwlknonf1o.w . . 3 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋)}
2 eqid 2738 . . 3 {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
3 clwwlknonclwlknonf1o.f . . 3 𝐹 = (𝑐𝑊 ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
4 eqid 2738 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐))))
5 eqid 2738 . . . . 5 (1st𝑐) = (1st𝑐)
6 eqid 2738 . . . . 5 (2nd𝑐) = (2nd𝑐)
75, 6, 2, 4clwlknf1oclwwlkn 28349 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}–1-1-onto→(𝑁 ClWWalksN 𝐺))
873adant2 1129 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↦ ((2nd𝑐) prefix (♯‘(1st𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}–1-1-onto→(𝑁 ClWWalksN 𝐺))
9 fveq1 6755 . . . . . . 7 (𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐))) → (𝑠‘0) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0))
1093ad2ant3 1133 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑠‘0) = (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0))
11 2fveq3 6761 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
1211eqeq1d 2740 . . . . . . . . . . 11 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
1312elrab 3617 . . . . . . . . . 10 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (♯‘(1st𝑐)) = 𝑁))
14 clwlkwlk 28044 . . . . . . . . . . . 12 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
15 wlkcpr 27898 . . . . . . . . . . . . 13 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
16 eqid 2738 . . . . . . . . . . . . . . . . 17 (Vtx‘𝐺) = (Vtx‘𝐺)
1716wlkpwrd 27887 . . . . . . . . . . . . . . . 16 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
18173ad2ant1 1131 . . . . . . . . . . . . . . 15 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
19 elnnuz 12551 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
20 eluzfz2 13193 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2119, 20sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
22 fzelp1 13237 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...𝑁) → 𝑁 ∈ (1...(𝑁 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1)))
24233ad2ant3 1133 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑁 ∈ (1...(𝑁 + 1)))
25243ad2ant3 1133 . . . . . . . . . . . . . . . . 17 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → 𝑁 ∈ (1...(𝑁 + 1)))
26 id 22 . . . . . . . . . . . . . . . . . . 19 ((♯‘(1st𝑐)) = 𝑁 → (♯‘(1st𝑐)) = 𝑁)
27 oveq1 7262 . . . . . . . . . . . . . . . . . . . 20 ((♯‘(1st𝑐)) = 𝑁 → ((♯‘(1st𝑐)) + 1) = (𝑁 + 1))
2827oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 ((♯‘(1st𝑐)) = 𝑁 → (1...((♯‘(1st𝑐)) + 1)) = (1...(𝑁 + 1)))
2926, 28eleq12d 2833 . . . . . . . . . . . . . . . . . 18 ((♯‘(1st𝑐)) = 𝑁 → ((♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
30293ad2ant2 1132 . . . . . . . . . . . . . . . . 17 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3125, 30mpbird 256 . . . . . . . . . . . . . . . 16 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1)))
32 wlklenvp1 27888 . . . . . . . . . . . . . . . . . . 19 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3332oveq2d 7271 . . . . . . . . . . . . . . . . . 18 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (1...(♯‘(2nd𝑐))) = (1...((♯‘(1st𝑐)) + 1)))
3433eleq2d 2824 . . . . . . . . . . . . . . . . 17 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))) ↔ (♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1))))
35343ad2ant1 1131 . . . . . . . . . . . . . . . 16 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))) ↔ (♯‘(1st𝑐)) ∈ (1...((♯‘(1st𝑐)) + 1))))
3631, 35mpbird 256 . . . . . . . . . . . . . . 15 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))))
3718, 36jca 511 . . . . . . . . . . . . . 14 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))
38373exp 1117 . . . . . . . . . . . . 13 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) = 𝑁 → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))))
3915, 38sylbi 216 . . . . . . . . . . . 12 (𝑐 ∈ (Walks‘𝐺) → ((♯‘(1st𝑐)) = 𝑁 → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))))
4014, 39syl 17 . . . . . . . . . . 11 (𝑐 ∈ (ClWalks‘𝐺) → ((♯‘(1st𝑐)) = 𝑁 → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))))
4140imp 406 . . . . . . . . . 10 ((𝑐 ∈ (ClWalks‘𝐺) ∧ (♯‘(1st𝑐)) = 𝑁) → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))))))
4213, 41sylbi 216 . . . . . . . . 9 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} → ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐))))))
4342impcom 407 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}) → ((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))))
44 pfxfv0 14333 . . . . . . . 8 (((2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ (♯‘(1st𝑐)) ∈ (1...(♯‘(2nd𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0) = ((2nd𝑐)‘0))
4543, 44syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0) = ((2nd𝑐)‘0))
46453adant3 1130 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (((2nd𝑐) prefix (♯‘(1st𝑐)))‘0) = ((2nd𝑐)‘0))
4710, 46eqtrd 2778 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → (𝑠‘0) = ((2nd𝑐)‘0))
4847eqeq1d 2740 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑠‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋))
49 nfv 1918 . . . . 5 𝑤((2nd𝑐)‘0) = 𝑋
50 fveq2 6756 . . . . . . 7 (𝑤 = 𝑐 → (2nd𝑤) = (2nd𝑐))
5150fveq1d 6758 . . . . . 6 (𝑤 = 𝑐 → ((2nd𝑤)‘0) = ((2nd𝑐)‘0))
5251eqeq1d 2740 . . . . 5 (𝑤 = 𝑐 → (((2nd𝑤)‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋))
5349, 52sbiev 2312 . . . 4 ([𝑐 / 𝑤]((2nd𝑤)‘0) = 𝑋 ↔ ((2nd𝑐)‘0) = 𝑋)
5448, 53bitr4di 288 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∧ 𝑠 = ((2nd𝑐) prefix (♯‘(1st𝑐)))) → ((𝑠‘0) = 𝑋 ↔ [𝑐 / 𝑤]((2nd𝑤)‘0) = 𝑋))
551, 2, 3, 4, 8, 54f1ossf1o 6982 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝐹:𝑊1-1-onto→{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋})
56 clwwlknon 28355 . . 3 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋}
57 f1oeq3 6690 . . 3 ((𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋} → (𝐹:𝑊1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝐹:𝑊1-1-onto→{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋}))
5856, 57ax-mp 5 . 2 (𝐹:𝑊1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝐹:𝑊1-1-onto→{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑠‘0) = 𝑋})
5955, 58sylibr 233 1 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝐹:𝑊1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  [wsb 2068  wcel 2108  {crab 3067   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  cuz 12511  ...cfz 13168  chash 13972  Word cword 14145   prefix cpfx 14311  Vtxcvtx 27269  USPGraphcuspgr 27421  Walkscwlks 27866  ClWalkscclwlks 28039   ClWWalksN cclwwlkn 28289  ClWWalksNOncclwwlknon 28352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-uspgr 27423  df-wlks 27869  df-clwlks 28040  df-clwwlk 28247  df-clwwlkn 28290  df-clwwlknon 28353
This theorem is referenced by:  clwwlknonclwlknonen  28628  dlwwlknondlwlknonf1o  28630
  Copyright terms: Public domain W3C validator