MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonclwlknonf1o Structured version   Visualization version   GIF version

Theorem clwwlknonclwlknonf1o 29604
Description: 𝐹 is a bijection between the two representations of closed walks of a fixed positive length on a fixed vertex. (Contributed by AV, 26-May-2022.) (Proof shortened by AV, 7-Aug-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlknonclwlknonf1o.v 𝑉 = (Vtxβ€˜πΊ)
clwwlknonclwlknonf1o.w π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
clwwlknonclwlknonf1o.f 𝐹 = (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
Assertion
Ref Expression
clwwlknonclwlknonf1o ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝐹:π‘Šβ€“1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
Distinct variable groups:   𝐺,𝑐,𝑀   𝑁,𝑐,𝑀   𝑉,𝑐   π‘Š,𝑐   𝑋,𝑐,𝑀
Allowed substitution hints:   𝐹(𝑀,𝑐)   𝑉(𝑀)   π‘Š(𝑀)

Proof of Theorem clwwlknonclwlknonf1o
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 clwwlknonclwlknonf1o.w . . 3 π‘Š = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
2 eqid 2732 . . 3 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}
3 clwwlknonclwlknonf1o.f . . 3 𝐹 = (𝑐 ∈ π‘Š ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
4 eqid 2732 . . 3 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))))
5 eqid 2732 . . . . 5 (1st β€˜π‘) = (1st β€˜π‘)
6 eqid 2732 . . . . 5 (2nd β€˜π‘) = (2nd β€˜π‘)
75, 6, 2, 4clwlknf1oclwwlkn 29326 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
873adant2 1131 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↦ ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
9 fveq1 6887 . . . . . . 7 (𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘))) β†’ (π‘ β€˜0) = (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0))
1093ad2ant3 1135 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (π‘ β€˜0) = (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0))
11 2fveq3 6893 . . . . . . . . . . . 12 (𝑀 = 𝑐 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘)))
1211eqeq1d 2734 . . . . . . . . . . 11 (𝑀 = 𝑐 β†’ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
1312elrab 3682 . . . . . . . . . 10 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁))
14 clwlkwlk 29021 . . . . . . . . . . . 12 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ 𝑐 ∈ (Walksβ€˜πΊ))
15 wlkcpr 28875 . . . . . . . . . . . . 13 (𝑐 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘))
16 eqid 2732 . . . . . . . . . . . . . . . . 17 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
1716wlkpwrd 28863 . . . . . . . . . . . . . . . 16 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ))
18173ad2ant1 1133 . . . . . . . . . . . . . . 15 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ))
19 elnnuz 12862 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„• ↔ 𝑁 ∈ (β„€β‰₯β€˜1))
20 eluzfz2 13505 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (β„€β‰₯β€˜1) β†’ 𝑁 ∈ (1...𝑁))
2119, 20sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„• β†’ 𝑁 ∈ (1...𝑁))
22 fzelp1 13549 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...𝑁) β†’ 𝑁 ∈ (1...(𝑁 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„• β†’ 𝑁 ∈ (1...(𝑁 + 1)))
24233ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ (1...(𝑁 + 1)))
25243ad2ant3 1135 . . . . . . . . . . . . . . . . 17 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ 𝑁 ∈ (1...(𝑁 + 1)))
26 id 22 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ (β™―β€˜(1st β€˜π‘)) = 𝑁)
27 oveq1 7412 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((β™―β€˜(1st β€˜π‘)) + 1) = (𝑁 + 1))
2827oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ (1...((β™―β€˜(1st β€˜π‘)) + 1)) = (1...(𝑁 + 1)))
2926, 28eleq12d 2827 . . . . . . . . . . . . . . . . . 18 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
30293ad2ant2 1134 . . . . . . . . . . . . . . . . 17 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3125, 30mpbird 256 . . . . . . . . . . . . . . . 16 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1)))
32 wlklenvp1 28864 . . . . . . . . . . . . . . . . . . 19 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(2nd β€˜π‘)) = ((β™―β€˜(1st β€˜π‘)) + 1))
3332oveq2d 7421 . . . . . . . . . . . . . . . . . 18 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (1...(β™―β€˜(2nd β€˜π‘))) = (1...((β™―β€˜(1st β€˜π‘)) + 1)))
3433eleq2d 2819 . . . . . . . . . . . . . . . . 17 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ ((β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))) ↔ (β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1))))
35343ad2ant1 1133 . . . . . . . . . . . . . . . 16 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))) ↔ (β™―β€˜(1st β€˜π‘)) ∈ (1...((β™―β€˜(1st β€˜π‘)) + 1))))
3631, 35mpbird 256 . . . . . . . . . . . . . . 15 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))))
3718, 36jca 512 . . . . . . . . . . . . . 14 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ (𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•)) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))
38373exp 1119 . . . . . . . . . . . . 13 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))))
3915, 38sylbi 216 . . . . . . . . . . . 12 (𝑐 ∈ (Walksβ€˜πΊ) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))))
4014, 39syl 17 . . . . . . . . . . 11 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))))
4140imp 407 . . . . . . . . . 10 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))))))
4213, 41sylbi 216 . . . . . . . . 9 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} β†’ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘))))))
4342impcom 408 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}) β†’ ((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))))
44 pfxfv0 14638 . . . . . . . 8 (((2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π‘)) ∈ (1...(β™―β€˜(2nd β€˜π‘)))) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0) = ((2nd β€˜π‘)β€˜0))
4543, 44syl 17 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0) = ((2nd β€˜π‘)β€˜0))
46453adant3 1132 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))β€˜0) = ((2nd β€˜π‘)β€˜0))
4710, 46eqtrd 2772 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ (π‘ β€˜0) = ((2nd β€˜π‘)β€˜0))
4847eqeq1d 2734 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ ((π‘ β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
49 nfv 1917 . . . . 5 Ⅎ𝑀((2nd β€˜π‘)β€˜0) = 𝑋
50 fveq2 6888 . . . . . . 7 (𝑀 = 𝑐 β†’ (2nd β€˜π‘€) = (2nd β€˜π‘))
5150fveq1d 6890 . . . . . 6 (𝑀 = 𝑐 β†’ ((2nd β€˜π‘€)β€˜0) = ((2nd β€˜π‘)β€˜0))
5251eqeq1d 2734 . . . . 5 (𝑀 = 𝑐 β†’ (((2nd β€˜π‘€)β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
5349, 52sbiev 2308 . . . 4 ([𝑐 / 𝑀]((2nd β€˜π‘€)β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋)
5448, 53bitr4di 288 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∧ 𝑠 = ((2nd β€˜π‘) prefix (β™―β€˜(1st β€˜π‘)))) β†’ ((π‘ β€˜0) = 𝑋 ↔ [𝑐 / 𝑀]((2nd β€˜π‘€)β€˜0) = 𝑋))
551, 2, 3, 4, 8, 54f1ossf1o 7122 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋})
56 clwwlknon 29332 . . 3 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋}
57 f1oeq3 6820 . . 3 ((𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋} β†’ (𝐹:π‘Šβ€“1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋}))
5856, 57ax-mp 5 . 2 (𝐹:π‘Šβ€“1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ 𝐹:π‘Šβ€“1-1-ontoβ†’{𝑠 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘ β€˜0) = 𝑋})
5955, 58sylibr 233 1 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ 𝐹:π‘Šβ€“1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  [wsb 2067   ∈ wcel 2106  {crab 3432   class class class wbr 5147   ↦ cmpt 5230  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  0cc0 11106  1c1 11107   + caddc 11109  β„•cn 12208  β„€β‰₯cuz 12818  ...cfz 13480  β™―chash 14286  Word cword 14460   prefix cpfx 14616  Vtxcvtx 28245  USPGraphcuspgr 28397  Walkscwlks 28842  ClWalkscclwlks 29016   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-uspgr 28399  df-wlks 28845  df-clwlks 29017  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  clwwlknonclwlknonen  29605  dlwwlknondlwlknonf1o  29607
  Copyright terms: Public domain W3C validator