![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frins2f | Structured version Visualization version GIF version |
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
frins2f.1 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
frins2f.2 | ⊢ Ⅎ𝑦𝜓 |
frins2f.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
frins2f | ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3782 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
2 | frins2f.2 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
3 | frins2f.3 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbiev 2303 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜓) |
5 | 1, 4 | bitr3i 276 | . . . 4 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜓) |
6 | 5 | ralbii 3090 | . . 3 ⊢ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓) |
7 | frins2f.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
8 | 6, 7 | biimtrid 241 | . 2 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
9 | 8 | frinsg 9782 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 Ⅎwnf 1777 [wsb 2059 ∈ wcel 2098 ∀wral 3058 [wsbc 3778 Fr wfr 5634 Se wse 5635 Predcpred 6309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 ax-inf2 9672 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-ttrcl 9739 |
This theorem is referenced by: frins2 9785 |
Copyright terms: Public domain | W3C validator |