Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds2f Structured version   Visualization version   GIF version

Theorem setinds2f 35743
Description: E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
setinds2f.1 𝑥𝜓
setinds2f.2 (𝑥 = 𝑦 → (𝜑𝜓))
setinds2f.3 (∀𝑦𝑥 𝜓𝜑)
Assertion
Ref Expression
setinds2f 𝜑
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem setinds2f
StepHypRef Expression
1 sbsbc 3808 . . . . 5 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
2 setinds2f.1 . . . . . 6 𝑥𝜓
3 setinds2f.2 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3sbiev 2318 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
51, 4bitr3i 277 . . . 4 ([𝑦 / 𝑥]𝜑𝜓)
65ralbii 3099 . . 3 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
7 setinds2f.3 . . 3 (∀𝑦𝑥 𝜓𝜑)
86, 7sylbi 217 . 2 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
98setinds 35742 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1781  [wsb 2064  wral 3067  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466
This theorem is referenced by:  setinds2  35744
  Copyright terms: Public domain W3C validator