Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds2f Structured version   Visualization version   GIF version

Theorem setinds2f 33755
Description: E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
setinds2f.1 𝑥𝜓
setinds2f.2 (𝑥 = 𝑦 → (𝜑𝜓))
setinds2f.3 (∀𝑦𝑥 𝜓𝜑)
Assertion
Ref Expression
setinds2f 𝜑
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem setinds2f
StepHypRef Expression
1 sbsbc 3720 . . . . 5 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
2 setinds2f.1 . . . . . 6 𝑥𝜓
3 setinds2f.2 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3sbiev 2309 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
51, 4bitr3i 276 . . . 4 ([𝑦 / 𝑥]𝜑𝜓)
65ralbii 3092 . . 3 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
7 setinds2f.3 . . 3 (∀𝑦𝑥 𝜓𝜑)
86, 7sylbi 216 . 2 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
98setinds 33754 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1786  [wsb 2067  wral 3064  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by:  setinds2  33756
  Copyright terms: Public domain W3C validator