MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemeet1 Structured version   Visualization version   GIF version

Theorem lemeet1 18351
Description: A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b 𝐡 = (Baseβ€˜πΎ)
meetval2.l ≀ = (leβ€˜πΎ)
meetval2.m ∧ = (meetβ€˜πΎ)
meetval2.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
meetval2.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
meetval2.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
meetlem.e (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ )
Assertion
Ref Expression
lemeet1 (πœ‘ β†’ (𝑋 ∧ π‘Œ) ≀ 𝑋)

Proof of Theorem lemeet1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 meetval2.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 meetval2.l . . 3 ≀ = (leβ€˜πΎ)
3 meetval2.m . . 3 ∧ = (meetβ€˜πΎ)
4 meetval2.k . . 3 (πœ‘ β†’ 𝐾 ∈ 𝑉)
5 meetval2.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
6 meetval2.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
7 meetlem.e . . 3 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ )
81, 2, 3, 4, 5, 6, 7meetlem 18350 . 2 (πœ‘ β†’ (((𝑋 ∧ π‘Œ) ≀ 𝑋 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ (𝑋 ∧ π‘Œ))))
98simplld 767 1 (πœ‘ β†’ (𝑋 ∧ π‘Œ) ≀ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βŸ¨cop 4635   class class class wbr 5149  dom cdm 5677  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  lecple 17204  meetcmee 18265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-glb 18300  df-meet 18302
This theorem is referenced by:  meetle  18353  latmle1  18417
  Copyright terms: Public domain W3C validator