| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemeet1 | Structured version Visualization version GIF version | ||
| Description: A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetval2.l | ⊢ ≤ = (le‘𝐾) |
| meetval2.m | ⊢ ∧ = (meet‘𝐾) |
| meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| meetlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| Ref | Expression |
|---|---|
| lemeet1 | ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | meetval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | meetval2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 4 | meetval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 5 | meetval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | meetval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | meetlem.e | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | meetlem 18416 | . 2 ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
| 9 | 8 | simplld 767 | 1 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 〈cop 4614 class class class wbr 5125 dom cdm 5667 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 lecple 17284 meetcmee 18333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-glb 18366 df-meet 18368 |
| This theorem is referenced by: meetle 18419 latmle1 18483 |
| Copyright terms: Public domain | W3C validator |