| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1cpbl | Structured version Visualization version GIF version | ||
| Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1bas2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| pi1bas3.r | ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) |
| pi1cpbl.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
| pi1cpbl.a | ⊢ + = (+g‘𝑂) |
| Ref | Expression |
|---|---|
| pi1cpbl | ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1cpbl.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
| 2 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | pi1val.2 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑌 ∈ 𝑋) |
| 6 | pi1val.g | . . . . . 6 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
| 7 | pi1bas2.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝐵 = (Base‘𝐺)) |
| 9 | eqidd 2730 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (Base‘𝑂) = (Base‘𝑂)) | |
| 10 | 6, 3, 5, 1, 8, 9 | pi1buni 24938 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ∪ 𝐵 = (Base‘𝑂)) |
| 11 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀𝑅𝑁) | |
| 12 | pi1bas3.r | . . . . . . . . 9 ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) | |
| 13 | 12 | breqi 5098 | . . . . . . . 8 ⊢ (𝑀𝑅𝑁 ↔ 𝑀(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑁) |
| 14 | brinxp2 5697 | . . . . . . . 8 ⊢ (𝑀(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑁 ↔ ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) | |
| 15 | 13, 14 | bitri 275 | . . . . . . 7 ⊢ (𝑀𝑅𝑁 ↔ ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) |
| 16 | 11, 15 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) |
| 17 | 16 | simplld 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀 ∈ ∪ 𝐵) |
| 18 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃𝑅𝑄) | |
| 19 | 12 | breqi 5098 | . . . . . . . 8 ⊢ (𝑃𝑅𝑄 ↔ 𝑃(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑄) |
| 20 | brinxp2 5697 | . . . . . . . 8 ⊢ (𝑃(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑄 ↔ ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) | |
| 21 | 19, 20 | bitri 275 | . . . . . . 7 ⊢ (𝑃𝑅𝑄 ↔ ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) |
| 22 | 18, 21 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) |
| 23 | 22 | simplld 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃 ∈ ∪ 𝐵) |
| 24 | 1, 3, 5, 10, 17, 23 | om1addcl 24931 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵) |
| 25 | 16 | simplrd 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑁 ∈ ∪ 𝐵) |
| 26 | 22 | simplrd 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑄 ∈ ∪ 𝐵) |
| 27 | 1, 3, 5, 10, 25, 26 | om1addcl 24931 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) |
| 28 | 6, 3, 5, 8 | pi1eluni 24940 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 ∈ ∪ 𝐵 ↔ (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌))) |
| 29 | 17, 28 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌)) |
| 30 | 29 | simp3d 1144 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀‘1) = 𝑌) |
| 31 | 6, 3, 5, 8 | pi1eluni 24940 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃 ∈ ∪ 𝐵 ↔ (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))) |
| 32 | 23, 31 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
| 33 | 32 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃‘0) = 𝑌) |
| 34 | 30, 33 | eqtr4d 2767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀‘1) = (𝑃‘0)) |
| 35 | 16 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀( ≃ph‘𝐽)𝑁) |
| 36 | 22 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃( ≃ph‘𝐽)𝑄) |
| 37 | 34, 35, 36 | pcohtpy 24918 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄)) |
| 38 | 12 | breqi 5098 | . . . . 5 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄) ↔ (𝑀(*𝑝‘𝐽)𝑃)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑁(*𝑝‘𝐽)𝑄)) |
| 39 | brinxp2 5697 | . . . . 5 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑁(*𝑝‘𝐽)𝑄) ↔ (((𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵 ∧ (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) ∧ (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄))) | |
| 40 | 38, 39 | bitri 275 | . . . 4 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄) ↔ (((𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵 ∧ (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) ∧ (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄))) |
| 41 | 24, 27, 37, 40 | syl21anbrc 1345 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄)) |
| 42 | 1, 3, 5 | om1plusg 24932 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (*𝑝‘𝐽) = (+g‘𝑂)) |
| 43 | pi1cpbl.a | . . . . 5 ⊢ + = (+g‘𝑂) | |
| 44 | 42, 43 | eqtr4di 2782 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (*𝑝‘𝐽) = + ) |
| 45 | 44 | oveqd 7366 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃) = (𝑀 + 𝑃)) |
| 46 | 44 | oveqd 7366 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑁(*𝑝‘𝐽)𝑄) = (𝑁 + 𝑄)) |
| 47 | 41, 45, 46 | 3brtr3d 5123 | . 2 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)) |
| 48 | 47 | ex 412 | 1 ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ∪ cuni 4858 class class class wbr 5092 × cxp 5617 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 Basecbs 17120 +gcplusg 17161 TopOnctopon 22795 Cn ccn 23109 IIcii 24766 ≃phcphtpc 24866 *𝑝cpco 24898 Ω1 comi 24899 π1 cpi1 24901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-qus 17413 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-cn 23112 df-cnp 23113 df-tx 23447 df-hmeo 23640 df-xms 24206 df-ms 24207 df-tms 24208 df-ii 24768 df-htpy 24867 df-phtpy 24868 df-phtpc 24889 df-pco 24903 df-om1 24904 df-pi1 24906 |
| This theorem is referenced by: pi1addf 24945 pi1addval 24946 pi1grplem 24947 |
| Copyright terms: Public domain | W3C validator |