MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cpbl Structured version   Visualization version   GIF version

Theorem pi1cpbl 25090
Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1bas2.b (𝜑𝐵 = (Base‘𝐺))
pi1bas3.r 𝑅 = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
pi1cpbl.o 𝑂 = (𝐽 Ω1 𝑌)
pi1cpbl.a + = (+g𝑂)
Assertion
Ref Expression
pi1cpbl (𝜑 → ((𝑀𝑅𝑁𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)))

Proof of Theorem pi1cpbl
StepHypRef Expression
1 pi1cpbl.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
2 pi1val.1 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐽 ∈ (TopOn‘𝑋))
4 pi1val.2 . . . . . 6 (𝜑𝑌𝑋)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑌𝑋)
6 pi1val.g . . . . . 6 𝐺 = (𝐽 π1 𝑌)
7 pi1bas2.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐺))
87adantr 480 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐵 = (Base‘𝐺))
9 eqidd 2735 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (Base‘𝑂) = (Base‘𝑂))
106, 3, 5, 1, 8, 9pi1buni 25086 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐵 = (Base‘𝑂))
11 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀𝑅𝑁)
12 pi1bas3.r . . . . . . . . 9 𝑅 = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
1312breqi 5153 . . . . . . . 8 (𝑀𝑅𝑁𝑀(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑁)
14 brinxp2 5765 . . . . . . . 8 (𝑀(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑁 ↔ ((𝑀 𝐵𝑁 𝐵) ∧ 𝑀( ≃ph𝐽)𝑁))
1513, 14bitri 275 . . . . . . 7 (𝑀𝑅𝑁 ↔ ((𝑀 𝐵𝑁 𝐵) ∧ 𝑀( ≃ph𝐽)𝑁))
1611, 15sylib 218 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → ((𝑀 𝐵𝑁 𝐵) ∧ 𝑀( ≃ph𝐽)𝑁))
1716simplld 768 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀 𝐵)
18 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃𝑅𝑄)
1912breqi 5153 . . . . . . . 8 (𝑃𝑅𝑄𝑃(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑄)
20 brinxp2 5765 . . . . . . . 8 (𝑃(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑄 ↔ ((𝑃 𝐵𝑄 𝐵) ∧ 𝑃( ≃ph𝐽)𝑄))
2119, 20bitri 275 . . . . . . 7 (𝑃𝑅𝑄 ↔ ((𝑃 𝐵𝑄 𝐵) ∧ 𝑃( ≃ph𝐽)𝑄))
2218, 21sylib 218 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → ((𝑃 𝐵𝑄 𝐵) ∧ 𝑃( ≃ph𝐽)𝑄))
2322simplld 768 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃 𝐵)
241, 3, 5, 10, 17, 23om1addcl 25079 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃) ∈ 𝐵)
2516simplrd 770 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑁 𝐵)
2622simplrd 770 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑄 𝐵)
271, 3, 5, 10, 25, 26om1addcl 25079 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵)
286, 3, 5, 8pi1eluni 25088 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 𝐵 ↔ (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌)))
2917, 28mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌))
3029simp3d 1143 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀‘1) = 𝑌)
316, 3, 5, 8pi1eluni 25088 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 𝐵 ↔ (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)))
3223, 31mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3332simp2d 1142 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃‘0) = 𝑌)
3430, 33eqtr4d 2777 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀‘1) = (𝑃‘0))
3516simprd 495 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀( ≃ph𝐽)𝑁)
3622simprd 495 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃( ≃ph𝐽)𝑄)
3734, 35, 36pcohtpy 25066 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄))
3812breqi 5153 . . . . 5 ((𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄) ↔ (𝑀(*𝑝𝐽)𝑃)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑁(*𝑝𝐽)𝑄))
39 brinxp2 5765 . . . . 5 ((𝑀(*𝑝𝐽)𝑃)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑁(*𝑝𝐽)𝑄) ↔ (((𝑀(*𝑝𝐽)𝑃) ∈ 𝐵 ∧ (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵) ∧ (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄)))
4038, 39bitri 275 . . . 4 ((𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄) ↔ (((𝑀(*𝑝𝐽)𝑃) ∈ 𝐵 ∧ (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵) ∧ (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄)))
4124, 27, 37, 40syl21anbrc 1343 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄))
421, 3, 5om1plusg 25080 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (*𝑝𝐽) = (+g𝑂))
43 pi1cpbl.a . . . . 5 + = (+g𝑂)
4442, 43eqtr4di 2792 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (*𝑝𝐽) = + )
4544oveqd 7447 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃) = (𝑀 + 𝑃))
4644oveqd 7447 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑁(*𝑝𝐽)𝑄) = (𝑁 + 𝑄))
4741, 45, 463brtr3d 5178 . 2 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))
4847ex 412 1 (𝜑 → ((𝑀𝑅𝑁𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  cin 3961   cuni 4911   class class class wbr 5147   × cxp 5686  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153  Basecbs 17244  +gcplusg 17297  TopOnctopon 22931   Cn ccn 23247  IIcii 24914  phcphtpc 25014  *𝑝cpco 25046   Ω1 comi 25047   π1 cpi1 25049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-cn 23250  df-cnp 23251  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-ii 24916  df-htpy 25015  df-phtpy 25016  df-phtpc 25037  df-pco 25051  df-om1 25052  df-pi1 25054
This theorem is referenced by:  pi1addf  25093  pi1addval  25094  pi1grplem  25095
  Copyright terms: Public domain W3C validator