![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1cpbl | Structured version Visualization version GIF version |
Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1bas2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
pi1bas3.r | ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) |
pi1cpbl.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
pi1cpbl.a | ⊢ + = (+g‘𝑂) |
Ref | Expression |
---|---|
pi1cpbl | ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1cpbl.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
2 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝐽 ∈ (TopOn‘𝑋)) |
4 | pi1val.2 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑌 ∈ 𝑋) |
6 | pi1val.g | . . . . . 6 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
7 | pi1bas2.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝐵 = (Base‘𝐺)) |
9 | eqidd 2741 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (Base‘𝑂) = (Base‘𝑂)) | |
10 | 6, 3, 5, 1, 8, 9 | pi1buni 25092 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ∪ 𝐵 = (Base‘𝑂)) |
11 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀𝑅𝑁) | |
12 | pi1bas3.r | . . . . . . . . 9 ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) | |
13 | 12 | breqi 5172 | . . . . . . . 8 ⊢ (𝑀𝑅𝑁 ↔ 𝑀(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑁) |
14 | brinxp2 5777 | . . . . . . . 8 ⊢ (𝑀(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑁 ↔ ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) | |
15 | 13, 14 | bitri 275 | . . . . . . 7 ⊢ (𝑀𝑅𝑁 ↔ ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) |
16 | 11, 15 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) |
17 | 16 | simplld 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀 ∈ ∪ 𝐵) |
18 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃𝑅𝑄) | |
19 | 12 | breqi 5172 | . . . . . . . 8 ⊢ (𝑃𝑅𝑄 ↔ 𝑃(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑄) |
20 | brinxp2 5777 | . . . . . . . 8 ⊢ (𝑃(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑄 ↔ ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) | |
21 | 19, 20 | bitri 275 | . . . . . . 7 ⊢ (𝑃𝑅𝑄 ↔ ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) |
22 | 18, 21 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) |
23 | 22 | simplld 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃 ∈ ∪ 𝐵) |
24 | 1, 3, 5, 10, 17, 23 | om1addcl 25085 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵) |
25 | 16 | simplrd 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑁 ∈ ∪ 𝐵) |
26 | 22 | simplrd 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑄 ∈ ∪ 𝐵) |
27 | 1, 3, 5, 10, 25, 26 | om1addcl 25085 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) |
28 | 6, 3, 5, 8 | pi1eluni 25094 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 ∈ ∪ 𝐵 ↔ (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌))) |
29 | 17, 28 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌)) |
30 | 29 | simp3d 1144 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀‘1) = 𝑌) |
31 | 6, 3, 5, 8 | pi1eluni 25094 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃 ∈ ∪ 𝐵 ↔ (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))) |
32 | 23, 31 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
33 | 32 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃‘0) = 𝑌) |
34 | 30, 33 | eqtr4d 2783 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀‘1) = (𝑃‘0)) |
35 | 16 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀( ≃ph‘𝐽)𝑁) |
36 | 22 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃( ≃ph‘𝐽)𝑄) |
37 | 34, 35, 36 | pcohtpy 25072 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄)) |
38 | 12 | breqi 5172 | . . . . 5 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄) ↔ (𝑀(*𝑝‘𝐽)𝑃)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑁(*𝑝‘𝐽)𝑄)) |
39 | brinxp2 5777 | . . . . 5 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑁(*𝑝‘𝐽)𝑄) ↔ (((𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵 ∧ (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) ∧ (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄))) | |
40 | 38, 39 | bitri 275 | . . . 4 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄) ↔ (((𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵 ∧ (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) ∧ (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄))) |
41 | 24, 27, 37, 40 | syl21anbrc 1344 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄)) |
42 | 1, 3, 5 | om1plusg 25086 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (*𝑝‘𝐽) = (+g‘𝑂)) |
43 | pi1cpbl.a | . . . . 5 ⊢ + = (+g‘𝑂) | |
44 | 42, 43 | eqtr4di 2798 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (*𝑝‘𝐽) = + ) |
45 | 44 | oveqd 7465 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃) = (𝑀 + 𝑃)) |
46 | 44 | oveqd 7465 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑁(*𝑝‘𝐽)𝑄) = (𝑁 + 𝑄)) |
47 | 41, 45, 46 | 3brtr3d 5197 | . 2 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)) |
48 | 47 | ex 412 | 1 ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∪ cuni 4931 class class class wbr 5166 × cxp 5698 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 Basecbs 17258 +gcplusg 17311 TopOnctopon 22937 Cn ccn 23253 IIcii 24920 ≃phcphtpc 25020 *𝑝cpco 25052 Ω1 comi 25053 π1 cpi1 25055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-qus 17569 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-cn 23256 df-cnp 23257 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-ii 24922 df-htpy 25021 df-phtpy 25022 df-phtpc 25043 df-pco 25057 df-om1 25058 df-pi1 25060 |
This theorem is referenced by: pi1addf 25099 pi1addval 25100 pi1grplem 25101 |
Copyright terms: Public domain | W3C validator |