| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pi1cpbl | Structured version Visualization version GIF version | ||
| Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
| pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| pi1bas2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| pi1bas3.r | ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) |
| pi1cpbl.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
| pi1cpbl.a | ⊢ + = (+g‘𝑂) |
| Ref | Expression |
|---|---|
| pi1cpbl | ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1cpbl.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
| 2 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | pi1val.2 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑌 ∈ 𝑋) |
| 6 | pi1val.g | . . . . . 6 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
| 7 | pi1bas2.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝐵 = (Base‘𝐺)) |
| 9 | eqidd 2730 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (Base‘𝑂) = (Base‘𝑂)) | |
| 10 | 6, 3, 5, 1, 8, 9 | pi1buni 24940 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ∪ 𝐵 = (Base‘𝑂)) |
| 11 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀𝑅𝑁) | |
| 12 | pi1bas3.r | . . . . . . . . 9 ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) | |
| 13 | 12 | breqi 5113 | . . . . . . . 8 ⊢ (𝑀𝑅𝑁 ↔ 𝑀(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑁) |
| 14 | brinxp2 5716 | . . . . . . . 8 ⊢ (𝑀(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑁 ↔ ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) | |
| 15 | 13, 14 | bitri 275 | . . . . . . 7 ⊢ (𝑀𝑅𝑁 ↔ ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) |
| 16 | 11, 15 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) |
| 17 | 16 | simplld 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀 ∈ ∪ 𝐵) |
| 18 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃𝑅𝑄) | |
| 19 | 12 | breqi 5113 | . . . . . . . 8 ⊢ (𝑃𝑅𝑄 ↔ 𝑃(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑄) |
| 20 | brinxp2 5716 | . . . . . . . 8 ⊢ (𝑃(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑄 ↔ ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) | |
| 21 | 19, 20 | bitri 275 | . . . . . . 7 ⊢ (𝑃𝑅𝑄 ↔ ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) |
| 22 | 18, 21 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) |
| 23 | 22 | simplld 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃 ∈ ∪ 𝐵) |
| 24 | 1, 3, 5, 10, 17, 23 | om1addcl 24933 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵) |
| 25 | 16 | simplrd 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑁 ∈ ∪ 𝐵) |
| 26 | 22 | simplrd 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑄 ∈ ∪ 𝐵) |
| 27 | 1, 3, 5, 10, 25, 26 | om1addcl 24933 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) |
| 28 | 6, 3, 5, 8 | pi1eluni 24942 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 ∈ ∪ 𝐵 ↔ (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌))) |
| 29 | 17, 28 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌)) |
| 30 | 29 | simp3d 1144 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀‘1) = 𝑌) |
| 31 | 6, 3, 5, 8 | pi1eluni 24942 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃 ∈ ∪ 𝐵 ↔ (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))) |
| 32 | 23, 31 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
| 33 | 32 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃‘0) = 𝑌) |
| 34 | 30, 33 | eqtr4d 2767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀‘1) = (𝑃‘0)) |
| 35 | 16 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀( ≃ph‘𝐽)𝑁) |
| 36 | 22 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃( ≃ph‘𝐽)𝑄) |
| 37 | 34, 35, 36 | pcohtpy 24920 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄)) |
| 38 | 12 | breqi 5113 | . . . . 5 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄) ↔ (𝑀(*𝑝‘𝐽)𝑃)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑁(*𝑝‘𝐽)𝑄)) |
| 39 | brinxp2 5716 | . . . . 5 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑁(*𝑝‘𝐽)𝑄) ↔ (((𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵 ∧ (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) ∧ (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄))) | |
| 40 | 38, 39 | bitri 275 | . . . 4 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄) ↔ (((𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵 ∧ (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) ∧ (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄))) |
| 41 | 24, 27, 37, 40 | syl21anbrc 1345 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄)) |
| 42 | 1, 3, 5 | om1plusg 24934 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (*𝑝‘𝐽) = (+g‘𝑂)) |
| 43 | pi1cpbl.a | . . . . 5 ⊢ + = (+g‘𝑂) | |
| 44 | 42, 43 | eqtr4di 2782 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (*𝑝‘𝐽) = + ) |
| 45 | 44 | oveqd 7404 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃) = (𝑀 + 𝑃)) |
| 46 | 44 | oveqd 7404 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑁(*𝑝‘𝐽)𝑄) = (𝑁 + 𝑄)) |
| 47 | 41, 45, 46 | 3brtr3d 5138 | . 2 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)) |
| 48 | 47 | ex 412 | 1 ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ∪ cuni 4871 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 Basecbs 17179 +gcplusg 17220 TopOnctopon 22797 Cn ccn 23111 IIcii 24768 ≃phcphtpc 24868 *𝑝cpco 24900 Ω1 comi 24901 π1 cpi1 24903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-qus 17472 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-cn 23114 df-cnp 23115 df-tx 23449 df-hmeo 23642 df-xms 24208 df-ms 24209 df-tms 24210 df-ii 24770 df-htpy 24869 df-phtpy 24870 df-phtpc 24891 df-pco 24905 df-om1 24906 df-pi1 24908 |
| This theorem is referenced by: pi1addf 24947 pi1addval 24948 pi1grplem 24949 |
| Copyright terms: Public domain | W3C validator |