Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pi1cpbl | Structured version Visualization version GIF version |
Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1bas2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
pi1bas3.r | ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) |
pi1cpbl.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
pi1cpbl.a | ⊢ + = (+g‘𝑂) |
Ref | Expression |
---|---|
pi1cpbl | ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1cpbl.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
2 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | 2 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝐽 ∈ (TopOn‘𝑋)) |
4 | pi1val.2 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
5 | 4 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑌 ∈ 𝑋) |
6 | pi1val.g | . . . . . 6 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
7 | pi1bas2.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
8 | 7 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝐵 = (Base‘𝐺)) |
9 | eqidd 2737 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (Base‘𝑂) = (Base‘𝑂)) | |
10 | 6, 3, 5, 1, 8, 9 | pi1buni 24248 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ∪ 𝐵 = (Base‘𝑂)) |
11 | simprl 769 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀𝑅𝑁) | |
12 | pi1bas3.r | . . . . . . . . 9 ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) | |
13 | 12 | breqi 5087 | . . . . . . . 8 ⊢ (𝑀𝑅𝑁 ↔ 𝑀(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑁) |
14 | brinxp2 5675 | . . . . . . . 8 ⊢ (𝑀(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑁 ↔ ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) | |
15 | 13, 14 | bitri 275 | . . . . . . 7 ⊢ (𝑀𝑅𝑁 ↔ ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) |
16 | 11, 15 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ((𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵) ∧ 𝑀( ≃ph‘𝐽)𝑁)) |
17 | 16 | simplld 766 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀 ∈ ∪ 𝐵) |
18 | simprr 771 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃𝑅𝑄) | |
19 | 12 | breqi 5087 | . . . . . . . 8 ⊢ (𝑃𝑅𝑄 ↔ 𝑃(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑄) |
20 | brinxp2 5675 | . . . . . . . 8 ⊢ (𝑃(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))𝑄 ↔ ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) | |
21 | 19, 20 | bitri 275 | . . . . . . 7 ⊢ (𝑃𝑅𝑄 ↔ ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) |
22 | 18, 21 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → ((𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵) ∧ 𝑃( ≃ph‘𝐽)𝑄)) |
23 | 22 | simplld 766 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃 ∈ ∪ 𝐵) |
24 | 1, 3, 5, 10, 17, 23 | om1addcl 24241 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵) |
25 | 16 | simplrd 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑁 ∈ ∪ 𝐵) |
26 | 22 | simplrd 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑄 ∈ ∪ 𝐵) |
27 | 1, 3, 5, 10, 25, 26 | om1addcl 24241 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) |
28 | 6, 3, 5, 8 | pi1eluni 24250 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 ∈ ∪ 𝐵 ↔ (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌))) |
29 | 17, 28 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌)) |
30 | 29 | simp3d 1144 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀‘1) = 𝑌) |
31 | 6, 3, 5, 8 | pi1eluni 24250 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃 ∈ ∪ 𝐵 ↔ (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))) |
32 | 23, 31 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
33 | 32 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑃‘0) = 𝑌) |
34 | 30, 33 | eqtr4d 2779 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀‘1) = (𝑃‘0)) |
35 | 16 | simprd 497 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑀( ≃ph‘𝐽)𝑁) |
36 | 22 | simprd 497 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → 𝑃( ≃ph‘𝐽)𝑄) |
37 | 34, 35, 36 | pcohtpy 24228 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄)) |
38 | 12 | breqi 5087 | . . . . 5 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄) ↔ (𝑀(*𝑝‘𝐽)𝑃)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑁(*𝑝‘𝐽)𝑄)) |
39 | brinxp2 5675 | . . . . 5 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)(( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵))(𝑁(*𝑝‘𝐽)𝑄) ↔ (((𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵 ∧ (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) ∧ (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄))) | |
40 | 38, 39 | bitri 275 | . . . 4 ⊢ ((𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄) ↔ (((𝑀(*𝑝‘𝐽)𝑃) ∈ ∪ 𝐵 ∧ (𝑁(*𝑝‘𝐽)𝑄) ∈ ∪ 𝐵) ∧ (𝑀(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)(𝑁(*𝑝‘𝐽)𝑄))) |
41 | 24, 27, 37, 40 | syl21anbrc 1344 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃)𝑅(𝑁(*𝑝‘𝐽)𝑄)) |
42 | 1, 3, 5 | om1plusg 24242 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (*𝑝‘𝐽) = (+g‘𝑂)) |
43 | pi1cpbl.a | . . . . 5 ⊢ + = (+g‘𝑂) | |
44 | 42, 43 | eqtr4di 2794 | . . . 4 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (*𝑝‘𝐽) = + ) |
45 | 44 | oveqd 7324 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀(*𝑝‘𝐽)𝑃) = (𝑀 + 𝑃)) |
46 | 44 | oveqd 7324 | . . 3 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑁(*𝑝‘𝐽)𝑄) = (𝑁 + 𝑄)) |
47 | 41, 45, 46 | 3brtr3d 5112 | . 2 ⊢ ((𝜑 ∧ (𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄)) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)) |
48 | 47 | ex 414 | 1 ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ∪ cuni 4844 class class class wbr 5081 × cxp 5598 ‘cfv 6458 (class class class)co 7307 0cc0 10917 1c1 10918 Basecbs 16957 +gcplusg 17007 TopOnctopon 22104 Cn ccn 22420 IIcii 24083 ≃phcphtpc 24177 *𝑝cpco 24208 Ω1 comi 24209 π1 cpi1 24211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-ec 8531 df-qs 8535 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-icc 13132 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-qus 17265 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-cn 22423 df-cnp 22424 df-tx 22758 df-hmeo 22951 df-xms 23518 df-ms 23519 df-tms 23520 df-ii 24085 df-htpy 24178 df-phtpy 24179 df-phtpc 24200 df-pco 24213 df-om1 24214 df-pi1 24216 |
This theorem is referenced by: pi1addf 24255 pi1addval 24256 pi1grplem 24257 |
Copyright terms: Public domain | W3C validator |