Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoablo Structured version   Visualization version   GIF version

Theorem rngoablo 37512
Description: A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ringabl.1 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngoablo (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)

Proof of Theorem rngoablo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringabl.1 . . 3 𝐺 = (1st𝑅)
2 eqid 2725 . . 3 (2nd𝑅) = (2nd𝑅)
3 eqid 2725 . . 3 ran 𝐺 = ran 𝐺
41, 2, 3rngoi 37503 . 2 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ (2nd𝑅):(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥(2nd𝑅)𝑦)(2nd𝑅)𝑧) = (𝑥(2nd𝑅)(𝑦(2nd𝑅)𝑧)) ∧ (𝑥(2nd𝑅)(𝑦𝐺𝑧)) = ((𝑥(2nd𝑅)𝑦)𝐺(𝑥(2nd𝑅)𝑧)) ∧ ((𝑥𝐺𝑦)(2nd𝑅)𝑧) = ((𝑥(2nd𝑅)𝑧)𝐺(𝑦(2nd𝑅)𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥(2nd𝑅)𝑦) = 𝑦 ∧ (𝑦(2nd𝑅)𝑥) = 𝑦))))
54simplld 766 1 (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059   × cxp 5676  ran crn 5679  wf 6545  cfv 6549  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  AbelOpcablo 30426  RingOpscrngo 37498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-1st 7994  df-2nd 7995  df-rngo 37499
This theorem is referenced by:  rngoablo2  37513  rngogrpo  37514  rngocom  37517  rngoa32  37519  rngoa4  37520
  Copyright terms: Public domain W3C validator