Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoablo | Structured version Visualization version GIF version |
Description: A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringabl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngoablo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringabl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
4 | 1, 2, 3 | rngoi 36057 | . 2 ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ (2nd ‘𝑅):(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺(((𝑥(2nd ‘𝑅)𝑦)(2nd ‘𝑅)𝑧) = (𝑥(2nd ‘𝑅)(𝑦(2nd ‘𝑅)𝑧)) ∧ (𝑥(2nd ‘𝑅)(𝑦𝐺𝑧)) = ((𝑥(2nd ‘𝑅)𝑦)𝐺(𝑥(2nd ‘𝑅)𝑧)) ∧ ((𝑥𝐺𝑦)(2nd ‘𝑅)𝑧) = ((𝑥(2nd ‘𝑅)𝑧)𝐺(𝑦(2nd ‘𝑅)𝑧))) ∧ ∃𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑥(2nd ‘𝑅)𝑦) = 𝑦 ∧ (𝑦(2nd ‘𝑅)𝑥) = 𝑦)))) |
5 | 4 | simplld 765 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 × cxp 5587 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 AbelOpcablo 28906 RingOpscrngo 36052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-1st 7831 df-2nd 7832 df-rngo 36053 |
This theorem is referenced by: rngoablo2 36067 rngogrpo 36068 rngocom 36071 rngoa32 36073 rngoa4 36074 |
Copyright terms: Public domain | W3C validator |