Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoablo | Structured version Visualization version GIF version |
Description: A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringabl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngoablo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringabl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
4 | 1, 2, 3 | rngoi 35984 | . 2 ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ (2nd ‘𝑅):(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺(((𝑥(2nd ‘𝑅)𝑦)(2nd ‘𝑅)𝑧) = (𝑥(2nd ‘𝑅)(𝑦(2nd ‘𝑅)𝑧)) ∧ (𝑥(2nd ‘𝑅)(𝑦𝐺𝑧)) = ((𝑥(2nd ‘𝑅)𝑦)𝐺(𝑥(2nd ‘𝑅)𝑧)) ∧ ((𝑥𝐺𝑦)(2nd ‘𝑅)𝑧) = ((𝑥(2nd ‘𝑅)𝑧)𝐺(𝑦(2nd ‘𝑅)𝑧))) ∧ ∃𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑥(2nd ‘𝑅)𝑦) = 𝑦 ∧ (𝑦(2nd ‘𝑅)𝑥) = 𝑦)))) |
5 | 4 | simplld 764 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 × cxp 5578 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 AbelOpcablo 28807 RingOpscrngo 35979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-1st 7804 df-2nd 7805 df-rngo 35980 |
This theorem is referenced by: rngoablo2 35994 rngogrpo 35995 rngocom 35998 rngoa32 36000 rngoa4 36001 |
Copyright terms: Public domain | W3C validator |