Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoablo Structured version   Visualization version   GIF version

Theorem rngoablo 35993
Description: A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ringabl.1 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngoablo (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)

Proof of Theorem rngoablo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringabl.1 . . 3 𝐺 = (1st𝑅)
2 eqid 2738 . . 3 (2nd𝑅) = (2nd𝑅)
3 eqid 2738 . . 3 ran 𝐺 = ran 𝐺
41, 2, 3rngoi 35984 . 2 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ (2nd𝑅):(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥(2nd𝑅)𝑦)(2nd𝑅)𝑧) = (𝑥(2nd𝑅)(𝑦(2nd𝑅)𝑧)) ∧ (𝑥(2nd𝑅)(𝑦𝐺𝑧)) = ((𝑥(2nd𝑅)𝑦)𝐺(𝑥(2nd𝑅)𝑧)) ∧ ((𝑥𝐺𝑦)(2nd𝑅)𝑧) = ((𝑥(2nd𝑅)𝑧)𝐺(𝑦(2nd𝑅)𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥(2nd𝑅)𝑦) = 𝑦 ∧ (𝑦(2nd𝑅)𝑥) = 𝑦))))
54simplld 764 1 (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   × cxp 5578  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  AbelOpcablo 28807  RingOpscrngo 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-1st 7804  df-2nd 7805  df-rngo 35980
This theorem is referenced by:  rngoablo2  35994  rngogrpo  35995  rngocom  35998  rngoa32  36000  rngoa4  36001
  Copyright terms: Public domain W3C validator