| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoablo | Structured version Visualization version GIF version | ||
| Description: A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringabl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| Ref | Expression |
|---|---|
| rngoablo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringabl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | eqid 2736 | . . 3 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 3 | eqid 2736 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 4 | 1, 2, 3 | rngoi 37928 | . 2 ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ (2nd ‘𝑅):(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺(((𝑥(2nd ‘𝑅)𝑦)(2nd ‘𝑅)𝑧) = (𝑥(2nd ‘𝑅)(𝑦(2nd ‘𝑅)𝑧)) ∧ (𝑥(2nd ‘𝑅)(𝑦𝐺𝑧)) = ((𝑥(2nd ‘𝑅)𝑦)𝐺(𝑥(2nd ‘𝑅)𝑧)) ∧ ((𝑥𝐺𝑦)(2nd ‘𝑅)𝑧) = ((𝑥(2nd ‘𝑅)𝑧)𝐺(𝑦(2nd ‘𝑅)𝑧))) ∧ ∃𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑥(2nd ‘𝑅)𝑦) = 𝑦 ∧ (𝑦(2nd ‘𝑅)𝑥) = 𝑦)))) |
| 5 | 4 | simplld 767 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 × cxp 5657 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 AbelOpcablo 30530 RingOpscrngo 37923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-1st 7993 df-2nd 7994 df-rngo 37924 |
| This theorem is referenced by: rngoablo2 37938 rngogrpo 37939 rngocom 37942 rngoa32 37944 rngoa4 37945 |
| Copyright terms: Public domain | W3C validator |