| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3spthond | Structured version Visualization version GIF version | ||
| Description: A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| Ref | Expression |
|---|---|
| 3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| 3trld.n | ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) |
| 3spthd.n | ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| 3spthond | ⊢ (𝜑 → 𝐹(𝐴(SPathsOn‘𝐺)𝐷)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
| 2 | 3wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
| 3 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
| 4 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
| 5 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
| 6 | 3wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 3wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | 3trld.n | . . 3 ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 3trlond 30109 | . 2 ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃) |
| 10 | 3spthd.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐷) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | 3spthd 30112 | . 2 ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) |
| 12 | 3 | simplld 767 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 13 | 3 | simprrd 773 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 14 | s3cli 14854 | . . . . . 6 ⊢ 〈“𝐽𝐾𝐿”〉 ∈ Word V | |
| 15 | 2, 14 | eqeltri 2825 | . . . . 5 ⊢ 𝐹 ∈ Word V |
| 16 | s4cli 14855 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | |
| 17 | 1, 16 | eqeltri 2825 | . . . . 5 ⊢ 𝑃 ∈ Word V |
| 18 | 15, 17 | pm3.2i 470 | . . . 4 ⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) |
| 20 | 6 | isspthson 29680 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐷)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
| 21 | 12, 13, 19, 20 | syl21anc 837 | . 2 ⊢ (𝜑 → (𝐹(𝐴(SPathsOn‘𝐺)𝐷)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
| 22 | 9, 11, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹(𝐴(SPathsOn‘𝐺)𝐷)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ⊆ wss 3917 {cpr 4594 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Word cword 14485 〈“cs3 14815 〈“cs4 14816 Vtxcvtx 28930 iEdgciedg 28931 TrailsOnctrlson 29626 SPathscspths 29648 SPathsOncspthson 29650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-s4 14823 df-wlks 29534 df-wlkson 29535 df-trls 29627 df-trlson 29628 df-spths 29652 df-spthson 29654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |