Step | Hyp | Ref
| Expression |
1 | | hspmbllem3.a |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ) |
2 | | hspmbllem3.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
3 | | inss1 4159 |
. . . . . 6
⊢ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ 𝐴 |
4 | | hspmbllem3.s |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
5 | 3, 4 | sstrid 3928 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋)) |
6 | 2, 5 | ovncl 43995 |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈ (0[,]+∞)) |
7 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ 𝐴) |
8 | 2, 7, 4 | ovnssle 43989 |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴)) |
9 | 1, 6, 8 | ge0lere 42960 |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) |
10 | 4 | ssdifssd 4073 |
. . . . 5
⊢ (𝜑 → (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋)) |
11 | 2, 10 | ovncl 43995 |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈ (0[,]+∞)) |
12 | | difssd 4063 |
. . . . 5
⊢ (𝜑 → (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ 𝐴) |
13 | 2, 12, 4 | ovnssle 43989 |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴)) |
14 | 1, 11, 13 | ge0lere 42960 |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) |
15 | | rexadd 12895 |
. . 3
⊢
((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ ∧ ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) →
(((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))))) |
16 | 9, 14, 15 | syl2anc 583 |
. 2
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))))) |
17 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ Fin) |
18 | | hspmbllem3.i |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
19 | 18 | ne0d 4266 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≠ ∅) |
20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑋 ≠ ∅) |
21 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝐴 ⊆ (ℝ
↑m 𝑋)) |
22 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈
ℝ+) |
23 | | hspmbllem3.c |
. . . . . 6
⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
24 | | hspmbllem3.l |
. . . . . 6
⊢ 𝐿 = (ℎ ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
ℎ)‘𝑘))) |
25 | | hspmbllem3.d |
. . . . . 6
⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ (𝑟 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) |
26 | 17, 20, 21, 22, 23, 24, 25 | ovncvrrp 43992 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∃𝑖 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) |
27 | | hspmbllem3.h |
. . . . . . . 8
⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) |
28 | 17 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝑋 ∈ Fin) |
29 | 18 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝐾 ∈ 𝑋) |
30 | | hspmbllem3.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ ℝ) |
31 | 30 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝑌 ∈ ℝ) |
32 | 22 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝑒 ∈ ℝ+) |
33 | 21 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
34 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = ℎ → (𝑖‘𝑗) = (ℎ‘𝑗)) |
35 | 34 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = ℎ → (𝐿‘(𝑖‘𝑗)) = (𝐿‘(ℎ‘𝑗))) |
36 | 35 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = ℎ → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(ℎ‘𝑗)))) |
37 | 36 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = ℎ →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(ℎ‘𝑗))))) |
38 | 37 | breq1d 5080 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = ℎ →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(ℎ‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟))) |
39 | 38 | cbvrabv 3416 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = {ℎ ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(ℎ‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} |
40 | 39 | mpteq2i 5175 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {ℎ ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(ℎ‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) |
41 | 40 | mpteq2i 5175 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝒫 (ℝ
↑m 𝑋)
↦ (𝑟 ∈
ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ (𝑟 ∈ ℝ+
↦ {ℎ ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(ℎ‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) |
42 | 25, 41 | eqtri 2766 |
. . . . . . . . . . 11
⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ (𝑟 ∈ ℝ+
↦ {ℎ ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(ℎ‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) |
43 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) |
44 | | hspmbllem3.10 |
. . . . . . . . . . 11
⊢ 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑘)))) |
45 | | hspmbllem3.11 |
. . . . . . . . . . 11
⊢ 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑘)))) |
46 | 28, 33, 32, 23, 24, 42, 43, 44, 45 | ovncvr2 44039 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → (((𝐵:ℕ⟶(ℝ ↑m
𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m
𝑋)) ∧ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒))) |
47 | 46 | simplld 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → (𝐵:ℕ⟶(ℝ ↑m
𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m
𝑋))) |
48 | 47 | simpld 494 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝐵:ℕ⟶(ℝ ↑m
𝑋)) |
49 | 47 | simprd 495 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝑇:ℕ⟶(ℝ ↑m
𝑋)) |
50 | 46 | simplrd 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
51 | 46 | simprd 495 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)) |
52 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
((voln*‘𝑋)‘𝐴) ∈ ℝ) |
53 | 22 | rpred 12701 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈
ℝ) |
54 | 52, 53 | rexaddd 12897 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
(((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒)) |
55 | 54 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒)) |
56 | 51, 55 | breqtrd 5096 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)) |
57 | 1 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → ((voln*‘𝑋)‘𝐴) ∈ ℝ) |
58 | 9 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) |
59 | 14 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) |
60 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
61 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑋)
↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
62 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑋)
↦ (ℎ ∈ 𝑋 ↦ if(ℎ = 𝐾, if(𝑥 ≤ (𝑐‘ℎ), (𝑐‘ℎ), 𝑥), (𝑐‘ℎ))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ = 𝐾, if(𝑥 ≤ (𝑐‘ℎ), (𝑐‘ℎ), 𝑥), (𝑐‘ℎ))))) |
63 | 27, 28, 29, 31, 32, 48, 49, 50, 56, 57, 58, 59, 60, 61, 62 | hspmbllem2 44055 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷‘𝐴)‘𝑒)) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)) |
64 | 63 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → (𝑖 ∈ ((𝐷‘𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))) |
65 | 64 | exlimdv 1937 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
(∃𝑖 𝑖 ∈ ((𝐷‘𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))) |
66 | 26, 65 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
(((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)) |
67 | 66 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑒 ∈ ℝ+
(((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)) |
68 | 9, 14 | readdcld 10935 |
. . . 4
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈ ℝ) |
69 | | alrple 12869 |
. . . 4
⊢
(((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈ ℝ ∧
((voln*‘𝑋)‘𝐴) ∈ ℝ) →
((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+
(((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))) |
70 | 68, 1, 69 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+
(((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))) |
71 | 67, 70 | mpbird 256 |
. 2
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴)) |
72 | 16, 71 | eqbrtrd 5092 |
1
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴)) |