Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbllem3 Structured version   Visualization version   GIF version

Theorem hspmbllem3 45217
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. This proof handles the non-trivial cases (nonzero dimension and finite outer measure). (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbllem3.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbllem3.x (𝜑𝑋 ∈ Fin)
hspmbllem3.i (𝜑𝐾𝑋)
hspmbllem3.y (𝜑𝑌 ∈ ℝ)
hspmbllem3.a (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
hspmbllem3.s (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
hspmbllem3.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
hspmbllem3.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
hspmbllem3.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
hspmbllem3.10 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
hspmbllem3.11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
Assertion
Ref Expression
hspmbllem3 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
Distinct variable groups:   𝐴,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐴,𝑟,𝑎,,𝑖,𝑗   𝐵,𝑎,,𝑘,𝑙   𝐶,𝑎,,𝑖,𝑟   𝐷,𝑎,,𝑗,𝑘,𝑙,𝑥,𝑦   𝐷,𝑟   𝑖,𝐻,𝑗,𝑘   𝐾,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐿,𝑎,,𝑖,𝑟   𝑇,𝑎,,𝑗,𝑘,𝑙   𝑋,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝑋,𝑟   𝑌,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑟
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑖,𝑗,𝑟)   𝐶(𝑥,𝑦,𝑗,𝑘,𝑙)   𝐷(𝑖)   𝑇(𝑥,𝑦,𝑖,𝑟)   𝐻(𝑥,𝑦,,𝑟,𝑎,𝑙)   𝐾(𝑟)   𝐿(𝑥,𝑦,𝑗,𝑘,𝑙)   𝑌(𝑟)

Proof of Theorem hspmbllem3
Dummy variables 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbllem3.a . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
2 hspmbllem3.x . . . . 5 (𝜑𝑋 ∈ Fin)
3 inss1 4226 . . . . . 6 (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴
4 hspmbllem3.s . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
53, 4sstrid 3991 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
62, 5ovncl 45156 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
73a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
82, 7, 4ovnssle 45150 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
91, 6, 8ge0lere 44118 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
104ssdifssd 4140 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
112, 10ovncl 45156 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
12 difssd 4130 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
132, 12, 4ovnssle 45150 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
141, 11, 13ge0lere 44118 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
15 rexadd 13198 . . 3 ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ ∧ ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
169, 14, 15syl2anc 585 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
172adantr 482 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
18 hspmbllem3.i . . . . . . . 8 (𝜑𝐾𝑋)
1918ne0d 4333 . . . . . . 7 (𝜑𝑋 ≠ ∅)
2019adantr 482 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ≠ ∅)
214adantr 482 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐴 ⊆ (ℝ ↑m 𝑋))
22 simpr 486 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
23 hspmbllem3.c . . . . . 6 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
24 hspmbllem3.l . . . . . 6 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
25 hspmbllem3.d . . . . . 6 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
2617, 20, 21, 22, 23, 24, 25ovncvrrp 45153 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒))
27 hspmbllem3.h . . . . . . . 8 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
2817adantr 482 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑋 ∈ Fin)
2918ad2antrr 725 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐾𝑋)
30 hspmbllem3.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
3130ad2antrr 725 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑌 ∈ ℝ)
3222adantr 482 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑒 ∈ ℝ+)
3321adantr 482 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 ⊆ (ℝ ↑m 𝑋))
34 fveq1 6880 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖𝑗) = (𝑗))
3534fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (𝑖 = → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝑗)))
3635mpteq2dv 5246 . . . . . . . . . . . . . . . . 17 (𝑖 = → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝑗))))
3736fveq2d 6885 . . . . . . . . . . . . . . . 16 (𝑖 = → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))))
3837breq1d 5154 . . . . . . . . . . . . . . 15 (𝑖 = → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)))
3938cbvrabv 3443 . . . . . . . . . . . . . 14 {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}
4039mpteq2i 5249 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})
4140mpteq2i 5249 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
4225, 41eqtri 2761 . . . . . . . . . . 11 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
43 simpr 486 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑖 ∈ ((𝐷𝐴)‘𝑒))
44 hspmbllem3.10 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
45 hspmbllem3.11 . . . . . . . . . . 11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
4628, 33, 32, 23, 24, 42, 43, 44, 45ovncvr2 45200 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)))
4746simplld 767 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)))
4847simpld 496 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐵:ℕ⟶(ℝ ↑m 𝑋))
4947simprd 497 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑇:ℕ⟶(ℝ ↑m 𝑋))
5046simplrd 769 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
5146simprd 497 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒))
521adantr 482 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
5322rpred 13003 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ)
5452, 53rexaddd 13200 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5554adantr 482 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5651, 55breqtrd 5170 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
571ad2antrr 725 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
589ad2antrr 725 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
5914ad2antrr 725 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
60 eqid 2733 . . . . . . . 8 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
61 eqid 2733 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
62 eqid 2733 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
6327, 28, 29, 31, 32, 48, 49, 50, 56, 57, 58, 59, 60, 61, 62hspmbllem2 45216 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6463ex 414 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6564exlimdv 1937 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6626, 65mpd 15 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6766ralrimiva 3147 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
689, 14readdcld 11230 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ)
69 alrple 13172 . . . 4 (((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ ∧ ((voln*‘𝑋)‘𝐴) ∈ ℝ) → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7068, 1, 69syl2anc 585 . . 3 (𝜑 → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7167, 70mpbird 257 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
7216, 71eqbrtrd 5166 1 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  {crab 3433  cdif 3943  cin 3945  wss 3946  c0 4320  ifcif 4524  𝒫 cpw 4598  {csn 4624   ciun 4993   class class class wbr 5144  cmpt 5227   × cxp 5670  ccom 5676  wf 6531  cfv 6535  (class class class)co 7396  cmpo 7398  1st c1st 7960  2nd c2nd 7961  m cmap 8808  Xcixp 8879  Fincfn 8927  cr 11096  0cc0 11097   + caddc 11100  -∞cmnf 11233  cle 11236  cn 12199  +crp 12961   +𝑒 cxad 13077  (,)cioo 13311  [,)cico 13313  cprod 15836  volcvol 24949  Σ^csumge0 44951  voln*covoln 45125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-2o 8454  df-er 8691  df-map 8810  df-pm 8811  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fi 9393  df-sup 9424  df-inf 9425  df-oi 9492  df-dju 9883  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13315  df-ico 13317  df-icc 13318  df-fz 13472  df-fzo 13615  df-fl 13744  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-clim 15419  df-rlim 15420  df-sum 15620  df-prod 15837  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-rest 17355  df-0g 17374  df-topgen 17376  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-subg 18988  df-cmn 19634  df-abl 19635  df-mgp 19971  df-ur 19988  df-ring 20040  df-cring 20041  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-dvr 20193  df-drng 20295  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-cnfld 20919  df-top 22365  df-topon 22382  df-bases 22418  df-cmp 22860  df-ovol 24950  df-vol 24951  df-sumge0 44952  df-ovoln 45126
This theorem is referenced by:  hspmbl  45218
  Copyright terms: Public domain W3C validator