Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbllem3 Structured version   Visualization version   GIF version

Theorem hspmbllem3 43626
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. This proof handles the non-trivial cases (nonzero dimension and finite outer measure). (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbllem3.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbllem3.x (𝜑𝑋 ∈ Fin)
hspmbllem3.i (𝜑𝐾𝑋)
hspmbllem3.y (𝜑𝑌 ∈ ℝ)
hspmbllem3.a (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
hspmbllem3.s (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
hspmbllem3.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
hspmbllem3.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
hspmbllem3.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
hspmbllem3.10 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
hspmbllem3.11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
Assertion
Ref Expression
hspmbllem3 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
Distinct variable groups:   𝐴,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐴,𝑟,𝑎,,𝑖,𝑗   𝐵,𝑎,,𝑘,𝑙   𝐶,𝑎,,𝑖,𝑟   𝐷,𝑎,,𝑗,𝑘,𝑙,𝑥,𝑦   𝐷,𝑟   𝑖,𝐻,𝑗,𝑘   𝐾,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐿,𝑎,,𝑖,𝑟   𝑇,𝑎,,𝑗,𝑘,𝑙   𝑋,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝑋,𝑟   𝑌,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑟
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑖,𝑗,𝑟)   𝐶(𝑥,𝑦,𝑗,𝑘,𝑙)   𝐷(𝑖)   𝑇(𝑥,𝑦,𝑖,𝑟)   𝐻(𝑥,𝑦,,𝑟,𝑎,𝑙)   𝐾(𝑟)   𝐿(𝑥,𝑦,𝑗,𝑘,𝑙)   𝑌(𝑟)

Proof of Theorem hspmbllem3
Dummy variables 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbllem3.a . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
2 hspmbllem3.x . . . . 5 (𝜑𝑋 ∈ Fin)
3 inss1 4134 . . . . . 6 (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴
4 hspmbllem3.s . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
53, 4sstrid 3904 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
62, 5ovncl 43565 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
73a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
82, 7, 4ovnssle 43559 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
91, 6, 8ge0lere 42528 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
104ssdifssd 4049 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
112, 10ovncl 43565 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
12 difssd 4039 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
132, 12, 4ovnssle 43559 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
141, 11, 13ge0lere 42528 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
15 rexadd 12659 . . 3 ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ ∧ ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
169, 14, 15syl2anc 588 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
172adantr 485 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
18 hspmbllem3.i . . . . . . . 8 (𝜑𝐾𝑋)
1918ne0d 4235 . . . . . . 7 (𝜑𝑋 ≠ ∅)
2019adantr 485 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ≠ ∅)
214adantr 485 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐴 ⊆ (ℝ ↑m 𝑋))
22 simpr 489 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
23 hspmbllem3.c . . . . . 6 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
24 hspmbllem3.l . . . . . 6 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
25 hspmbllem3.d . . . . . 6 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
2617, 20, 21, 22, 23, 24, 25ovncvrrp 43562 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒))
27 hspmbllem3.h . . . . . . . 8 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
2817adantr 485 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑋 ∈ Fin)
2918ad2antrr 726 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐾𝑋)
30 hspmbllem3.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
3130ad2antrr 726 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑌 ∈ ℝ)
3222adantr 485 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑒 ∈ ℝ+)
3321adantr 485 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 ⊆ (ℝ ↑m 𝑋))
34 fveq1 6658 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖𝑗) = (𝑗))
3534fveq2d 6663 . . . . . . . . . . . . . . . . . 18 (𝑖 = → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝑗)))
3635mpteq2dv 5129 . . . . . . . . . . . . . . . . 17 (𝑖 = → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝑗))))
3736fveq2d 6663 . . . . . . . . . . . . . . . 16 (𝑖 = → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))))
3837breq1d 5043 . . . . . . . . . . . . . . 15 (𝑖 = → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)))
3938cbvrabv 3405 . . . . . . . . . . . . . 14 {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}
4039mpteq2i 5125 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})
4140mpteq2i 5125 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
4225, 41eqtri 2782 . . . . . . . . . . 11 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
43 simpr 489 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑖 ∈ ((𝐷𝐴)‘𝑒))
44 hspmbllem3.10 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
45 hspmbllem3.11 . . . . . . . . . . 11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
4628, 33, 32, 23, 24, 42, 43, 44, 45ovncvr2 43609 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)))
4746simplld 768 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)))
4847simpld 499 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐵:ℕ⟶(ℝ ↑m 𝑋))
4947simprd 500 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑇:ℕ⟶(ℝ ↑m 𝑋))
5046simplrd 770 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
5146simprd 500 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒))
521adantr 485 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
5322rpred 12465 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ)
5452, 53rexaddd 12661 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5554adantr 485 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5651, 55breqtrd 5059 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
571ad2antrr 726 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
589ad2antrr 726 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
5914ad2antrr 726 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
60 eqid 2759 . . . . . . . 8 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
61 eqid 2759 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
62 eqid 2759 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
6327, 28, 29, 31, 32, 48, 49, 50, 56, 57, 58, 59, 60, 61, 62hspmbllem2 43625 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6463ex 417 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6564exlimdv 1935 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6626, 65mpd 15 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6766ralrimiva 3114 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
689, 14readdcld 10701 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ)
69 alrple 12633 . . . 4 (((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ ∧ ((voln*‘𝑋)‘𝐴) ∈ ℝ) → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7068, 1, 69syl2anc 588 . . 3 (𝜑 → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7167, 70mpbird 260 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
7216, 71eqbrtrd 5055 1 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wex 1782  wcel 2112  wne 2952  wral 3071  {crab 3075  cdif 3856  cin 3858  wss 3859  c0 4226  ifcif 4421  𝒫 cpw 4495  {csn 4523   ciun 4884   class class class wbr 5033  cmpt 5113   × cxp 5523  ccom 5529  wf 6332  cfv 6336  (class class class)co 7151  cmpo 7153  1st c1st 7692  2nd c2nd 7693  m cmap 8417  Xcixp 8480  Fincfn 8528  cr 10567  0cc0 10568   + caddc 10571  -∞cmnf 10704  cle 10707  cn 11667  +crp 12423   +𝑒 cxad 12539  (,)cioo 12772  [,)cico 12774  cprod 15300  volcvol 24156  Σ^csumge0 43360  voln*covoln 43534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-tpos 7903  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fi 8901  df-sup 8932  df-inf 8933  df-oi 9000  df-dju 9356  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-ioo 12776  df-ico 12778  df-icc 12779  df-fz 12933  df-fzo 13076  df-fl 13204  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-rlim 14887  df-sum 15084  df-prod 15301  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-rest 16747  df-0g 16766  df-topgen 16768  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-grp 18165  df-minusg 18166  df-subg 18336  df-cmn 18968  df-abl 18969  df-mgp 19301  df-ur 19313  df-ring 19360  df-cring 19361  df-oppr 19437  df-dvdsr 19455  df-unit 19456  df-invr 19486  df-dvr 19497  df-drng 19565  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-mopn 20155  df-cnfld 20160  df-top 21587  df-topon 21604  df-bases 21639  df-cmp 22080  df-ovol 24157  df-vol 24158  df-sumge0 43361  df-ovoln 43535
This theorem is referenced by:  hspmbl  43627
  Copyright terms: Public domain W3C validator