Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbllem3 Structured version   Visualization version   GIF version

Theorem hspmbllem3 41769
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. This proof handles the non-trivial cases (nonzero dimension and finite outer measure) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbllem3.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbllem3.x (𝜑𝑋 ∈ Fin)
hspmbllem3.i (𝜑𝐾𝑋)
hspmbllem3.y (𝜑𝑌 ∈ ℝ)
hspmbllem3.a (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
hspmbllem3.s (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
hspmbllem3.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
hspmbllem3.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
hspmbllem3.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
hspmbllem3.10 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
hspmbllem3.11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
Assertion
Ref Expression
hspmbllem3 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
Distinct variable groups:   𝐴,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐴,𝑟,𝑎,,𝑖,𝑗   𝐵,𝑎,,𝑘,𝑙   𝐶,𝑎,,𝑖,𝑟   𝐷,𝑎,,𝑗,𝑘,𝑙,𝑥,𝑦   𝐷,𝑟   𝑖,𝐻,𝑗,𝑘   𝐾,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐿,𝑎,,𝑖,𝑟   𝑇,𝑎,,𝑗,𝑘,𝑙   𝑋,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝑋,𝑟   𝑌,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑟
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑖,𝑗,𝑟)   𝐶(𝑥,𝑦,𝑗,𝑘,𝑙)   𝐷(𝑖)   𝑇(𝑥,𝑦,𝑖,𝑟)   𝐻(𝑥,𝑦,,𝑟,𝑎,𝑙)   𝐾(𝑟)   𝐿(𝑥,𝑦,𝑗,𝑘,𝑙)   𝑌(𝑟)

Proof of Theorem hspmbllem3
Dummy variables 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbllem3.a . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
2 hspmbllem3.x . . . . 5 (𝜑𝑋 ∈ Fin)
3 inss1 4053 . . . . . 6 (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴
4 hspmbllem3.s . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
53, 4syl5ss 3832 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑𝑚 𝑋))
62, 5ovncl 41708 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
73a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
82, 7, 4ovnssle 41702 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
91, 6, 8ge0lere 40667 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
104ssdifssd 3971 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑𝑚 𝑋))
112, 10ovncl 41708 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
12 difssd 3961 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
132, 12, 4ovnssle 41702 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
141, 11, 13ge0lere 40667 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
15 rexadd 12375 . . 3 ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ ∧ ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
169, 14, 15syl2anc 579 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
172adantr 474 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
18 hspmbllem3.i . . . . . . . 8 (𝜑𝐾𝑋)
1918ne0d 4150 . . . . . . 7 (𝜑𝑋 ≠ ∅)
2019adantr 474 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ≠ ∅)
214adantr 474 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐴 ⊆ (ℝ ↑𝑚 𝑋))
22 simpr 479 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
23 hspmbllem3.c . . . . . 6 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
24 hspmbllem3.l . . . . . 6 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
25 hspmbllem3.d . . . . . 6 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
2617, 20, 21, 22, 23, 24, 25ovncvrrp 41705 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒))
27 hspmbllem3.h . . . . . . . 8 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
2817adantr 474 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑋 ∈ Fin)
2918ad2antrr 716 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐾𝑋)
30 hspmbllem3.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
3130ad2antrr 716 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑌 ∈ ℝ)
3222adantr 474 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑒 ∈ ℝ+)
3321adantr 474 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 ⊆ (ℝ ↑𝑚 𝑋))
34 fveq1 6445 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖𝑗) = (𝑗))
3534fveq2d 6450 . . . . . . . . . . . . . . . . . 18 (𝑖 = → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝑗)))
3635mpteq2dv 4980 . . . . . . . . . . . . . . . . 17 (𝑖 = → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝑗))))
3736fveq2d 6450 . . . . . . . . . . . . . . . 16 (𝑖 = → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))))
3837breq1d 4896 . . . . . . . . . . . . . . 15 (𝑖 = → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)))
3938cbvrabv 3396 . . . . . . . . . . . . . 14 {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}
4039mpteq2i 4976 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})
4140mpteq2i 4976 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
4225, 41eqtri 2802 . . . . . . . . . . 11 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
43 simpr 479 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑖 ∈ ((𝐷𝐴)‘𝑒))
44 hspmbllem3.10 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
45 hspmbllem3.11 . . . . . . . . . . 11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
4628, 33, 32, 23, 24, 42, 43, 44, 45ovncvr2 41752 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)))
4746simplld 758 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)))
4847simpld 490 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐵:ℕ⟶(ℝ ↑𝑚 𝑋))
4947simprd 491 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋))
5046simplrd 760 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
5146simprd 491 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒))
521adantr 474 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
5322rpred 12181 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ)
5452, 53rexaddd 12377 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5554adantr 474 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5651, 55breqtrd 4912 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
571ad2antrr 716 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
589ad2antrr 716 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
5914ad2antrr 716 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
60 eqid 2778 . . . . . . . 8 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
61 eqid 2778 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
62 eqid 2778 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
6327, 28, 29, 31, 32, 48, 49, 50, 56, 57, 58, 59, 60, 61, 62hspmbllem2 41768 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6463ex 403 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6564exlimdv 1976 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6626, 65mpd 15 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6766ralrimiva 3148 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
689, 14readdcld 10406 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ)
69 alrple 12349 . . . 4 (((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ ∧ ((voln*‘𝑋)‘𝐴) ∈ ℝ) → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7068, 1, 69syl2anc 579 . . 3 (𝜑 → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7167, 70mpbird 249 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
7216, 71eqbrtrd 4908 1 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wex 1823  wcel 2107  wne 2969  wral 3090  {crab 3094  cdif 3789  cin 3791  wss 3792  c0 4141  ifcif 4307  𝒫 cpw 4379  {csn 4398   ciun 4753   class class class wbr 4886  cmpt 4965   × cxp 5353  ccom 5359  wf 6131  cfv 6135  (class class class)co 6922  cmpt2 6924  1st c1st 7443  2nd c2nd 7444  𝑚 cmap 8140  Xcixp 8194  Fincfn 8241  cr 10271  0cc0 10272   + caddc 10275  -∞cmnf 10409  cle 10412  cn 11374  +crp 12137   +𝑒 cxad 12255  (,)cioo 12487  [,)cico 12489  cprod 15038  volcvol 23667  Σ^csumge0 41503  voln*covoln 41677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-prod 15039  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-rest 16469  df-0g 16488  df-topgen 16490  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-subg 17975  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-drng 19141  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-bases 21158  df-cmp 21599  df-ovol 23668  df-vol 23669  df-sumge0 41504  df-ovoln 41678
This theorem is referenced by:  hspmbl  41770
  Copyright terms: Public domain W3C validator