Step | Hyp | Ref
| Expression |
1 | | pire 25615 |
. . . . 5
⊢ π
∈ ℝ |
2 | 1 | renegcli 11282 |
. . . 4
⊢ -π
∈ ℝ |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → -π ∈
ℝ) |
4 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → π ∈
ℝ) |
5 | | negpilt0 42819 |
. . . . 5
⊢ -π
< 0 |
6 | | pipos 25617 |
. . . . 5
⊢ 0 <
π |
7 | | 0re 10977 |
. . . . . 6
⊢ 0 ∈
ℝ |
8 | 2, 7, 1 | lttri 11101 |
. . . . 5
⊢ ((-π
< 0 ∧ 0 < π) → -π < π) |
9 | 5, 6, 8 | mp2an 689 |
. . . 4
⊢ -π
< π |
10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → -π <
π) |
11 | | fourierdlem94.p |
. . 3
⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
12 | | picn 25616 |
. . . . 5
⊢ π
∈ ℂ |
13 | 12 | 2timesi 12111 |
. . . 4
⊢ (2
· π) = (π + π) |
14 | | fourierdlem94.t |
. . . 4
⊢ 𝑇 = (2 ·
π) |
15 | 12, 12 | subnegi 11300 |
. . . 4
⊢ (π
− -π) = (π + π) |
16 | 13, 14, 15 | 3eqtr4i 2776 |
. . 3
⊢ 𝑇 = (π −
-π) |
17 | | fourierdlem94.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
18 | | fourierdlem94.q |
. . 3
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
19 | | ssid 3943 |
. . . 4
⊢ ℝ
⊆ ℝ |
20 | 19 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ⊆
ℝ) |
21 | | fourierdlem94.f |
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
22 | | simp2 1136 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ ℝ) |
23 | | zre 12323 |
. . . . . 6
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
24 | 23 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ) |
25 | | 2re 12047 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
26 | 25, 1 | remulcli 10991 |
. . . . . . . . 9
⊢ (2
· π) ∈ ℝ |
27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (2 · π) ∈
ℝ) |
28 | 14, 27 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ ℝ) |
29 | 28 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ) |
30 | 29 | 3adant2 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ) |
31 | 24, 30 | remulcld 11005 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ) |
32 | 22, 31 | readdcld 11004 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ ℝ) |
33 | | simp1 1135 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝜑) |
34 | | simp3 1137 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) |
35 | | ax-resscn 10928 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
36 | 35 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℂ) |
37 | 21, 36 | fssd 6618 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
38 | 37 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝐹:ℝ⟶ℂ) |
39 | 38 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
40 | 29 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
41 | | simplr 766 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℤ) |
42 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
43 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ)) |
44 | 43 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ 𝑦 ∈ ℝ))) |
45 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇)) |
46 | 45 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇))) |
47 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
48 | 46, 47 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦))) |
49 | 44, 48 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)))) |
50 | | fourierdlem94.per |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
51 | 49, 50 | chvarvv 2002 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) |
52 | 51 | ad4ant14 749 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) |
53 | 39, 40, 41, 42, 52 | fperiodmul 42843 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) |
54 | 33, 34, 22, 53 | syl21anc 835 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) |
55 | 35 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℂ) |
56 | | ioossre 13140 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
57 | 56 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
58 | 21, 57 | fssresd 6641 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) |
59 | 58, 36 | fssd 6618 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
60 | 59 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
61 | 56 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
62 | 37 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ) |
63 | 19 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℝ) |
64 | | eqid 2738 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
65 | 64 | tgioo2 23966 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
66 | 64, 65 | dvres 25075 |
. . . . . . 7
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ
⊆ ℝ ∧ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D
(𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))) |
67 | 55, 62, 63, 61, 66 | syl22anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))) |
68 | 67 | dmeqd 5814 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))) |
69 | | ioontr 43049 |
. . . . . . . 8
⊢
((int‘(topGen‘ran (,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) |
70 | 69 | reseq2i 5888 |
. . . . . . 7
⊢ ((ℝ
D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
71 | 70 | dmeqi 5813 |
. . . . . 6
⊢ dom
((ℝ D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
72 | 71 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
73 | | fourierdlem94.dvcn |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
74 | | cncff 24056 |
. . . . . 6
⊢
(((ℝ D 𝐹)
↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
75 | | fdm 6609 |
. . . . . 6
⊢
(((ℝ D 𝐹)
↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D
𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
76 | 73, 74, 75 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
77 | 68, 72, 76 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
78 | | dvcn 25085 |
. . . 4
⊢
(((ℝ ⊆ ℂ ∧ (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) ∧ dom (ℝ D
(𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
79 | 55, 60, 61, 77, 78 | syl31anc 1372 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
80 | 61, 35 | sstrdi 3933 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
81 | 11 | fourierdlem2 43650 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
82 | 17, 81 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
83 | 18, 82 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
84 | 83 | simpld 495 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
85 | | elmapi 8637 |
. . . . . . . . 9
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
86 | 84, 85 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
87 | 86 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
88 | | elfzofz 13403 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
89 | 88 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
90 | 87, 89 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
91 | 90 | rexrd 11025 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
92 | | fzofzp1 13484 |
. . . . . . 7
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
93 | 92 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
94 | 87, 93 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
95 | 83 | simprrd 771 |
. . . . . 6
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
96 | 95 | r19.21bi 3134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
97 | 64, 91, 94, 96 | lptioo2cn 43186 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
((limPt‘(TopOpen‘ℂfld))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
98 | 58 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) |
99 | 36, 37, 20 | dvbss 25065 |
. . . . . . . 8
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆
ℝ) |
100 | | dvfre 25115 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶ℝ ∧
ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
101 | 21, 20, 100 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
102 | 83 | simprd 496 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
103 | 102 | simplld 765 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) = -π) |
104 | 102 | simplrd 767 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝑀) = π) |
105 | 73, 74 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
106 | 94 | rexrd 11025 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
107 | 64, 106, 90, 96 | lptioo1cn 43187 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
((limPt‘(TopOpen‘ℂfld))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
108 | | fourierdlem94.dvlb |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) |
109 | 105, 80, 107, 108, 64 | ellimciota 43155 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∈ (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
110 | | fourierdlem94.dvub |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) |
111 | 105, 80, 97, 110, 64 | ellimciota 43155 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∈ (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
112 | 23 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ) |
113 | 112, 29 | remulcld 11005 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ) |
114 | 38 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
115 | 29 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℝ) |
116 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑘 ∈ ℤ) |
117 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
118 | 50 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
119 | 114, 115,
116, 117, 118 | fperiodmul 42843 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹‘𝑡)) |
120 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (ℝ
D 𝐹) = (ℝ D 𝐹) |
121 | 38, 113, 119, 120 | fperdvper 43460 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))) |
122 | 121 | an32s 649 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))) |
123 | 122 | simpld 495 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹)) |
124 | 122 | simprd 496 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)) |
125 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑄‘𝑗) = (𝑄‘𝑖)) |
126 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1)) |
127 | 126 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) |
128 | 125, 127 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝑄‘𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
129 | 128 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑗 ∈ (0..^𝑀) ↦ ((𝑄‘𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
130 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π
− 𝑡) / 𝑇)) · 𝑇))) = (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇))) |
131 | 99, 101, 3, 4, 10, 16, 17, 86, 103, 104, 73, 109, 111, 123, 124, 129, 130 | fourierdlem71 43718 |
. . . . . . 7
⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
132 | 131 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
133 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(𝜑 ∧ 𝑖 ∈ (0..^𝑀)) |
134 | | nfra1 3144 |
. . . . . . . . . 10
⊢
Ⅎ𝑡∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 |
135 | 133, 134 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑡((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
136 | 67, 70 | eqtrdi 2794 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
137 | 136 | fveq1d 6776 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡)) |
138 | | fvres 6793 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
139 | 137, 138 | sylan9eq 2798 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
140 | 139 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡))) |
141 | 140 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡))) |
142 | | simplr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
143 | | ssdmres 5914 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
144 | 76, 143 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹)) |
145 | 144 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹)) |
146 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
147 | 145, 146 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹)) |
148 | | rspa 3132 |
. . . . . . . . . . . 12
⊢
((∀𝑡 ∈
dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
149 | 142, 147,
148 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
150 | 141, 149 | eqbrtrd 5096 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧) |
151 | 150 | ex 413 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)) |
152 | 135, 151 | ralrimi 3141 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧) |
153 | 152 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)) |
154 | 153 | reximdv 3202 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)) |
155 | 132, 154 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧) |
156 | 90, 94, 98, 77, 155 | ioodvbdlimc2 43476 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) |
157 | 60, 80, 97, 156, 64 | ellimciota 43155 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
158 | | fourierdlem94.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
159 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥)) |
160 | 159 | oveq1d 7290 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇)) |
161 | 160 | fveq2d 6778 |
. . . . 5
⊢ (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇))) |
162 | 161 | oveq1d 7290 |
. . . 4
⊢ (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)) |
163 | 162 | cbvmptv 5187 |
. . 3
⊢ (𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦
((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)) |
164 | | id 22 |
. . . . 5
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) |
165 | | fveq2 6774 |
. . . . 5
⊢ (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧) = ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)) |
166 | 164, 165 | oveq12d 7293 |
. . . 4
⊢ (𝑧 = 𝑥 → (𝑧 + ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧)) = (𝑥 + ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))) |
167 | 166 | cbvmptv 5187 |
. . 3
⊢ (𝑧 ∈ ℝ ↦ (𝑧 + ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))) |
168 | 3, 4, 10, 11, 16, 17, 18, 20, 21, 32, 54, 79, 157, 158, 163, 167 | fourierdlem49 43696 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅) |
169 | 90, 94, 98, 77, 155 | ioodvbdlimc1 43474 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) |
170 | 60, 80, 107, 169, 64 | ellimciota 43155 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
171 | | biid 260 |
. . 3
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇)))) |
172 | 3, 4, 10, 11, 16, 17, 18, 21, 32, 54, 79, 170, 158, 163, 167, 171 | fourierdlem48 43695 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅) |
173 | 168, 172 | jca 512 |
1
⊢ (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠
∅)) |