Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem94 Structured version   Visualization version   GIF version

Theorem fourierdlem94 46246
Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem94.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem94.t 𝑇 = (2 · π)
fourierdlem94.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem94.x (𝜑𝑋 ∈ ℝ)
fourierdlem94.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem94.m (𝜑𝑀 ∈ ℕ)
fourierdlem94.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem94.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem94.dvlb ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
fourierdlem94.dvub ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
Assertion
Ref Expression
fourierdlem94 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑖,𝑀,𝑥,𝑛   𝑀,𝑝,𝑖,𝑛   𝑄,𝑖,𝑥,𝑛   𝑄,𝑝   𝑇,𝑖,𝑥,𝑛   𝑇,𝑝   𝑖,𝑋,𝑥,𝑛   𝑋,𝑝   𝜑,𝑖,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑥,𝑖,𝑛,𝑝)   𝐹(𝑝)

Proof of Theorem fourierdlem94
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pire 26393 . . . . 5 π ∈ ℝ
21renegcli 11422 . . . 4 -π ∈ ℝ
32a1i 11 . . 3 (𝜑 → -π ∈ ℝ)
41a1i 11 . . 3 (𝜑 → π ∈ ℝ)
5 negpilt0 45330 . . . . 5 -π < 0
6 pipos 26395 . . . . 5 0 < π
7 0re 11114 . . . . . 6 0 ∈ ℝ
82, 7, 1lttri 11239 . . . . 5 ((-π < 0 ∧ 0 < π) → -π < π)
95, 6, 8mp2an 692 . . . 4 -π < π
109a1i 11 . . 3 (𝜑 → -π < π)
11 fourierdlem94.p . . 3 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 picn 26394 . . . . 5 π ∈ ℂ
13122timesi 12258 . . . 4 (2 · π) = (π + π)
14 fourierdlem94.t . . . 4 𝑇 = (2 · π)
1512, 12subnegi 11440 . . . 4 (π − -π) = (π + π)
1613, 14, 153eqtr4i 2764 . . 3 𝑇 = (π − -π)
17 fourierdlem94.m . . 3 (𝜑𝑀 ∈ ℕ)
18 fourierdlem94.q . . 3 (𝜑𝑄 ∈ (𝑃𝑀))
19 ssid 3952 . . . 4 ℝ ⊆ ℝ
2019a1i 11 . . 3 (𝜑 → ℝ ⊆ ℝ)
21 fourierdlem94.f . . 3 (𝜑𝐹:ℝ⟶ℝ)
22 simp2 1137 . . . 4 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ ℝ)
23 zre 12472 . . . . . 6 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
24233ad2ant3 1135 . . . . 5 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
25 2re 12199 . . . . . . . . . 10 2 ∈ ℝ
2625, 1remulcli 11128 . . . . . . . . 9 (2 · π) ∈ ℝ
2726a1i 11 . . . . . . . 8 (𝜑 → (2 · π) ∈ ℝ)
2814, 27eqeltrid 2835 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2928adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
30293adant2 1131 . . . . 5 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
3124, 30remulcld 11142 . . . 4 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
3222, 31readdcld 11141 . . 3 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ ℝ)
33 simp1 1136 . . . 4 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝜑)
34 simp3 1138 . . . 4 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
35 ax-resscn 11063 . . . . . . . . 9 ℝ ⊆ ℂ
3635a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
3721, 36fssd 6668 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
3837adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
3938adantr 480 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
4029adantr 480 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
41 simplr 768 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℤ)
42 simpr 484 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
43 eleq1w 2814 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ))
4443anbi2d 630 . . . . . . . 8 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝑦 ∈ ℝ)))
45 oveq1 7353 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇))
4645fveq2d 6826 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇)))
47 fveq2 6822 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4846, 47eqeq12d 2747 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)))
4944, 48imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))))
50 fourierdlem94.per . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
5149, 50chvarvv 1990 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
5251ad4ant14 752 . . . . 5 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
5339, 40, 41, 42, 52fperiodmul 45353 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
5433, 34, 22, 53syl21anc 837 . . 3 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
5535a1i 11 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
56 ioossre 13307 . . . . . . . 8 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
5756a1i 11 . . . . . . 7 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
5821, 57fssresd 6690 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
5958, 36fssd 6668 . . . . 5 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
6059adantr 480 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
6156a1i 11 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
6237adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ)
6319a1i 11 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℝ)
64 eqid 2731 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65 tgioo4 24720 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6664, 65dvres 25839 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
6755, 62, 63, 61, 66syl22anc 838 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
6867dmeqd 5844 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
69 ioontr 45559 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))
7069reseq2i 5924 . . . . . . 7 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
7170dmeqi 5843 . . . . . 6 dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
7271a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
73 fourierdlem94.dvcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
74 cncff 24813 . . . . . 6 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
75 fdm 6660 . . . . . 6 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
7673, 74, 753syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
7768, 72, 763eqtrd 2770 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
78 dvcn 25850 . . . 4 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) ∧ dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
7955, 60, 61, 77, 78syl31anc 1375 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
8061, 35sstrdi 3942 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
8111fourierdlem2 46155 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
8217, 81syl 17 . . . . . . . . . . 11 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
8318, 82mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
8483simpld 494 . . . . . . . . 9 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
85 elmapi 8773 . . . . . . . . 9 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
8684, 85syl 17 . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶ℝ)
8786adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
88 elfzofz 13575 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
8988adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
9087, 89ffvelcdmd 7018 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
9190rexrd 11162 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
92 fzofzp1 13664 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
9392adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
9487, 93ffvelcdmd 7018 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
9583simprrd 773 . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
9695r19.21bi 3224 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
9764, 91, 94, 96lptioo2cn 45691 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
9858adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
9936, 37, 20dvbss 25829 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
100 dvfre 25882 . . . . . . . . 9 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10121, 20, 100syl2anc 584 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10283simprd 495 . . . . . . . . 9 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
103102simplld 767 . . . . . . . 8 (𝜑 → (𝑄‘0) = -π)
104102simplrd 769 . . . . . . . 8 (𝜑 → (𝑄𝑀) = π)
10573, 74syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
10694rexrd 11162 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
10764, 106, 90, 96lptioo1cn 45692 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
108 fourierdlem94.dvlb . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
109105, 80, 107, 108, 64ellimciota 45662 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
110 fourierdlem94.dvub . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
111105, 80, 97, 110, 64ellimciota 45662 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
11223adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
113112, 29remulcld 11142 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
11438adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
11529adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℝ)
116 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑘 ∈ ℤ)
117 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
11850ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
119114, 115, 116, 117, 118fperiodmul 45353 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
120 eqid 2731 . . . . . . . . . . 11 (ℝ D 𝐹) = (ℝ D 𝐹)
12138, 113, 119, 120fperdvper 45965 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
122121an32s 652 . . . . . . . . 9 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
123122simpld 494 . . . . . . . 8 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
124122simprd 495 . . . . . . . 8 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))
125 fveq2 6822 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
126 oveq1 7353 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
127126fveq2d 6826 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
128125, 127oveq12d 7364 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
129128cbvmptv 5193 . . . . . . . 8 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
130 eqid 2731 . . . . . . . 8 (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇))) = (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇)))
13199, 101, 3, 4, 10, 16, 17, 86, 103, 104, 73, 109, 111, 123, 124, 129, 130fourierdlem71 46223 . . . . . . 7 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
132131adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
133 nfv 1915 . . . . . . . . . 10 𝑡(𝜑𝑖 ∈ (0..^𝑀))
134 nfra1 3256 . . . . . . . . . 10 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
135133, 134nfan 1900 . . . . . . . . 9 𝑡((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
13667, 70eqtrdi 2782 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
137136fveq1d 6824 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡))
138 fvres 6841 . . . . . . . . . . . . . 14 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
139137, 138sylan9eq 2786 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
140139fveq2d 6826 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
141140adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
142 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
143 ssdmres 5961 . . . . . . . . . . . . . . 15 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
14476, 143sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
145144ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
146 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
147145, 146sseldd 3930 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
148 rspa 3221 . . . . . . . . . . . 12 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
149142, 147, 148syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
150141, 149eqbrtrd 5111 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
151150ex 412 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
152135, 151ralrimi 3230 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
153152ex 412 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
154153reximdv 3147 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
155132, 154mpd 15 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
15690, 94, 98, 77, 155ioodvbdlimc2 45981 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
15760, 80, 97, 156, 64ellimciota 45662 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
158 fourierdlem94.x . . 3 (𝜑𝑋 ∈ ℝ)
159 oveq2 7354 . . . . . . 7 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
160159oveq1d 7361 . . . . . 6 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
161160fveq2d 6826 . . . . 5 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
162161oveq1d 7361 . . . 4 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
163162cbvmptv 5193 . . 3 (𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
164 id 22 . . . . 5 (𝑧 = 𝑥𝑧 = 𝑥)
165 fveq2 6822 . . . . 5 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧) = ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))
166164, 165oveq12d 7364 . . . 4 (𝑧 = 𝑥 → (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧)) = (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
167166cbvmptv 5193 . . 3 (𝑧 ∈ ℝ ↦ (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
1683, 4, 10, 11, 16, 17, 18, 20, 21, 32, 54, 79, 157, 158, 163, 167fourierdlem49 46201 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
16990, 94, 98, 77, 155ioodvbdlimc1 45979 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
17060, 80, 107, 169, 64ellimciota 45662 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
171 biid 261 . . 3 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))) ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))))
1723, 4, 10, 11, 16, 17, 18, 21, 32, 54, 79, 170, 158, 163, 167, 171fourierdlem48 46200 . 2 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
173168, 172jca 511 1 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4280   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cres 5616  cio 6435  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  -∞cmnf 11144   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  cz 12468  (,)cioo 13245  [,)cico 13247  ...cfz 13407  ..^cfzo 13554  cfl 13694  abscabs 15141  πcpi 15973  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21291  intcnt 22932  cnccncf 24796   lim climc 25790   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795
This theorem is referenced by:  fourierdlem102  46254
  Copyright terms: Public domain W3C validator