Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem94 Structured version   Visualization version   GIF version

Theorem fourierdlem94 42351
Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem94.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem94.t 𝑇 = (2 · π)
fourierdlem94.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem94.x (𝜑𝑋 ∈ ℝ)
fourierdlem94.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem94.m (𝜑𝑀 ∈ ℕ)
fourierdlem94.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem94.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem94.dvlb ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
fourierdlem94.dvub ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
Assertion
Ref Expression
fourierdlem94 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑖,𝑀,𝑥,𝑛   𝑀,𝑝,𝑖,𝑛   𝑄,𝑖,𝑥,𝑛   𝑄,𝑝   𝑇,𝑖,𝑥,𝑛   𝑇,𝑝   𝑖,𝑋,𝑥,𝑛   𝑋,𝑝   𝜑,𝑖,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑥,𝑖,𝑛,𝑝)   𝐹(𝑝)

Proof of Theorem fourierdlem94
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pire 24959 . . . . 5 π ∈ ℝ
21renegcli 10936 . . . 4 -π ∈ ℝ
32a1i 11 . . 3 (𝜑 → -π ∈ ℝ)
41a1i 11 . . 3 (𝜑 → π ∈ ℝ)
5 negpilt0 41411 . . . . 5 -π < 0
6 pipos 24961 . . . . 5 0 < π
7 0re 10632 . . . . . 6 0 ∈ ℝ
82, 7, 1lttri 10755 . . . . 5 ((-π < 0 ∧ 0 < π) → -π < π)
95, 6, 8mp2an 688 . . . 4 -π < π
109a1i 11 . . 3 (𝜑 → -π < π)
11 fourierdlem94.p . . 3 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 picn 24960 . . . . 5 π ∈ ℂ
13122timesi 11764 . . . 4 (2 · π) = (π + π)
14 fourierdlem94.t . . . 4 𝑇 = (2 · π)
1512, 12subnegi 10954 . . . 4 (π − -π) = (π + π)
1613, 14, 153eqtr4i 2859 . . 3 𝑇 = (π − -π)
17 fourierdlem94.m . . 3 (𝜑𝑀 ∈ ℕ)
18 fourierdlem94.q . . 3 (𝜑𝑄 ∈ (𝑃𝑀))
19 ssid 3993 . . . 4 ℝ ⊆ ℝ
2019a1i 11 . . 3 (𝜑 → ℝ ⊆ ℝ)
21 fourierdlem94.f . . 3 (𝜑𝐹:ℝ⟶ℝ)
22 simp2 1131 . . . 4 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ ℝ)
23 zre 11974 . . . . . 6 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
24233ad2ant3 1129 . . . . 5 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
25 2re 11700 . . . . . . . . . 10 2 ∈ ℝ
2625, 1remulcli 10646 . . . . . . . . 9 (2 · π) ∈ ℝ
2726a1i 11 . . . . . . . 8 (𝜑 → (2 · π) ∈ ℝ)
2814, 27eqeltrid 2922 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2928adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
30293adant2 1125 . . . . 5 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
3124, 30remulcld 10660 . . . 4 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
3222, 31readdcld 10659 . . 3 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ ℝ)
33 simp1 1130 . . . 4 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝜑)
34 simp3 1132 . . . 4 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
35 ax-resscn 10583 . . . . . . . . 9 ℝ ⊆ ℂ
3635a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
3721, 36fssd 6525 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
3837adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
3938adantr 481 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
4029adantr 481 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
41 simplr 765 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℤ)
42 simpr 485 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
43 eleq1w 2900 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ))
4443anbi2d 628 . . . . . . . 8 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝑦 ∈ ℝ)))
45 oveq1 7155 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇))
4645fveq2d 6671 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇)))
47 fveq2 6667 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4846, 47eqeq12d 2842 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)))
4944, 48imbi12d 346 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))))
50 fourierdlem94.per . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
5149, 50chvarv 2410 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
5251ad4ant14 748 . . . . 5 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
5339, 40, 41, 42, 52fperiodmul 41436 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
5433, 34, 22, 53syl21anc 835 . . 3 ((𝜑𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
5535a1i 11 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
56 ioossre 12788 . . . . . . . 8 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
5756a1i 11 . . . . . . 7 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
5821, 57fssresd 6542 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
5958, 36fssd 6525 . . . . 5 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
6059adantr 481 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
6156a1i 11 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
6237adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ)
6319a1i 11 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℝ)
64 eqid 2826 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6564tgioo2 23326 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6664, 65dvres 24424 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
6755, 62, 63, 61, 66syl22anc 836 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
6867dmeqd 5773 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
69 ioontr 41652 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))
7069reseq2i 5849 . . . . . . 7 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
7170dmeqi 5772 . . . . . 6 dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
7271a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
73 fourierdlem94.dvcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
74 cncff 23416 . . . . . 6 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
75 fdm 6519 . . . . . 6 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
7673, 74, 753syl 18 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
7768, 72, 763eqtrd 2865 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
78 dvcn 24433 . . . 4 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) ∧ dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
7955, 60, 61, 77, 78syl31anc 1367 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
8061, 35syl6ss 3983 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
8111fourierdlem2 42260 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
8217, 81syl 17 . . . . . . . . . . 11 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
8318, 82mpbid 233 . . . . . . . . . 10 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
8483simpld 495 . . . . . . . . 9 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
85 elmapi 8418 . . . . . . . . 9 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
8684, 85syl 17 . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶ℝ)
8786adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
88 elfzofz 13043 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
8988adantl 482 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
9087, 89ffvelrnd 6848 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
9190rexrd 10680 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
92 fzofzp1 13124 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
9392adantl 482 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
9487, 93ffvelrnd 6848 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
9583simprrd 770 . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
9695r19.21bi 3213 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
9764, 91, 94, 96lptioo2cn 41791 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
9858adantr 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
9936, 37, 20dvbss 24414 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
100 dvfre 24463 . . . . . . . . 9 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10121, 20, 100syl2anc 584 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
10283simprd 496 . . . . . . . . 9 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
103102simplld 764 . . . . . . . 8 (𝜑 → (𝑄‘0) = -π)
104102simplrd 766 . . . . . . . 8 (𝜑 → (𝑄𝑀) = π)
10573, 74syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
10694rexrd 10680 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
10764, 106, 90, 96lptioo1cn 41792 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
108 fourierdlem94.dvlb . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
109105, 80, 107, 108, 64ellimciota 41760 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
110 fourierdlem94.dvub . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
111105, 80, 97, 110, 64ellimciota 41760 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
11223adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
113112, 29remulcld 10660 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
11438adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
11529adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℝ)
116 simplr 765 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑘 ∈ ℤ)
117 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
11850ad4ant14 748 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
119114, 115, 116, 117, 118fperiodmul 41436 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
120 eqid 2826 . . . . . . . . . . 11 (ℝ D 𝐹) = (ℝ D 𝐹)
12138, 113, 119, 120fperdvper 42068 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
122121an32s 648 . . . . . . . . 9 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
123122simpld 495 . . . . . . . 8 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
124122simprd 496 . . . . . . . 8 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))
125 fveq2 6667 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
126 oveq1 7155 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
127126fveq2d 6671 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
128125, 127oveq12d 7166 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
129128cbvmptv 5166 . . . . . . . 8 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
130 eqid 2826 . . . . . . . 8 (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇))) = (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇)))
13199, 101, 3, 4, 10, 16, 17, 86, 103, 104, 73, 109, 111, 123, 124, 129, 130fourierdlem71 42328 . . . . . . 7 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
132131adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
133 nfv 1908 . . . . . . . . . 10 𝑡(𝜑𝑖 ∈ (0..^𝑀))
134 nfra1 3224 . . . . . . . . . 10 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
135133, 134nfan 1893 . . . . . . . . 9 𝑡((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
13667, 70syl6eq 2877 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
137136fveq1d 6669 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡))
138 fvres 6686 . . . . . . . . . . . . . 14 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
139137, 138sylan9eq 2881 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
140139fveq2d 6671 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
141140adantlr 711 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
142 simplr 765 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
143 ssdmres 5875 . . . . . . . . . . . . . . 15 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
14476, 143sylibr 235 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
145144ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
146 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
147145, 146sseldd 3972 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
148 rspa 3211 . . . . . . . . . . . 12 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
149142, 147, 148syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
150141, 149eqbrtrd 5085 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
151150ex 413 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
152135, 151ralrimi 3221 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
153152ex 413 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
154153reximdv 3278 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
155132, 154mpd 15 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
15690, 94, 98, 77, 155ioodvbdlimc2 42085 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
15760, 80, 97, 156, 64ellimciota 41760 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
158 fourierdlem94.x . . 3 (𝜑𝑋 ∈ ℝ)
159 oveq2 7156 . . . . . . 7 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
160159oveq1d 7163 . . . . . 6 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
161160fveq2d 6671 . . . . 5 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
162161oveq1d 7163 . . . 4 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
163162cbvmptv 5166 . . 3 (𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
164 id 22 . . . . 5 (𝑧 = 𝑥𝑧 = 𝑥)
165 fveq2 6667 . . . . 5 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧) = ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))
166164, 165oveq12d 7166 . . . 4 (𝑧 = 𝑥 → (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧)) = (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
167166cbvmptv 5166 . . 3 (𝑧 ∈ ℝ ↦ (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
1683, 4, 10, 11, 16, 17, 18, 20, 21, 32, 54, 79, 157, 158, 163, 167fourierdlem49 42306 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
16990, 94, 98, 77, 155ioodvbdlimc1 42083 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
17060, 80, 107, 169, 64ellimciota 41760 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
171 biid 262 . . 3 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))) ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))))
1723, 4, 10, 11, 16, 17, 18, 21, 32, 54, 79, 170, 158, 163, 167, 171fourierdlem48 42305 . 2 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
173168, 172jca 512 1 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  {crab 3147  wss 3940  c0 4295   class class class wbr 5063  cmpt 5143  dom cdm 5554  ran crn 5555  cres 5556  cio 6310  wf 6348  cfv 6352  (class class class)co 7148  m cmap 8396  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11627  2c2 11681  cz 11970  (,)cioo 12728  [,)cico 12730  ...cfz 12882  ..^cfzo 13023  cfl 13150  abscabs 14583  πcpi 15410  TopOpenctopn 16685  topGenctg 16701  fldccnfld 20461  intcnt 21541  cnccncf 23399   lim climc 24375   D cdv 24376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cn 21751  df-cnp 21752  df-haus 21839  df-cmp 21911  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-tms 22847  df-cncf 23401  df-limc 24379  df-dv 24380
This theorem is referenced by:  fourierdlem102  42359
  Copyright terms: Public domain W3C validator