MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod1 Structured version   Visualization version   GIF version

Theorem lmhmlmod1 20973
Description: A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)

Proof of Theorem lmhmlmod1
StepHypRef Expression
1 eqid 2731 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2731 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 20969 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
43simplld 767 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6487  (class class class)co 7352  Scalarcsca 17170   GrpHom cghm 19130  LModclmod 20799   LMHom clmhm 20959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6443  df-fun 6489  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-lmhm 20962
This theorem is referenced by:  islmhm2  20978  lmhmco  20983  lmhmplusg  20984  lmhmvsca  20985  lmhmf1o  20986  lmhmima  20987  lmhmpreima  20988  lmhmlsp  20989  lmhmrnlss  20990  reslmhm  20992  reslmhm2  20993  reslmhm2b  20994  lmhmeql  20995  lspextmo  20996  islmim  21002  lmiclcl  21010  lmhmlvec  21050  lindfmm  21770  lindsmm  21771  lmhmclm  25020  lmhmimasvsca  33027  lmhmqusker  33389  kercvrlsm  43181  lmhmfgima  43182  lmhmfgsplit  43184  lmhmlnmsplit  43185
  Copyright terms: Public domain W3C validator