MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod1 Structured version   Visualization version   GIF version

Theorem lmhmlmod1 20295
Description: A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)

Proof of Theorem lmhmlmod1
StepHypRef Expression
1 eqid 2738 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2738 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 20291 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
43simplld 765 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Scalarcsca 16965   GrpHom cghm 18831  LModclmod 20123   LMHom clmhm 20281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-lmhm 20284
This theorem is referenced by:  islmhm2  20300  lmhmco  20305  lmhmplusg  20306  lmhmvsca  20307  lmhmf1o  20308  lmhmima  20309  lmhmpreima  20310  lmhmlsp  20311  lmhmrnlss  20312  reslmhm  20314  reslmhm2  20315  reslmhm2b  20316  lmhmeql  20317  lspextmo  20318  islmim  20324  lmiclcl  20332  lindfmm  21034  lindsmm  21035  lmhmclm  24250  lmhmlvec  40261  kercvrlsm  40908  lmhmfgima  40909  lmhmfgsplit  40911  lmhmlnmsplit  40912
  Copyright terms: Public domain W3C validator