MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod1 Structured version   Visualization version   GIF version

Theorem lmhmlmod1 20960
Description: A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)

Proof of Theorem lmhmlmod1
StepHypRef Expression
1 eqid 2730 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2730 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 20956 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
43simplld 767 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  Scalarcsca 17156   GrpHom cghm 19117  LModclmod 20786   LMHom clmhm 20946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-lmhm 20949
This theorem is referenced by:  islmhm2  20965  lmhmco  20970  lmhmplusg  20971  lmhmvsca  20972  lmhmf1o  20973  lmhmima  20974  lmhmpreima  20975  lmhmlsp  20976  lmhmrnlss  20977  reslmhm  20979  reslmhm2  20980  reslmhm2b  20981  lmhmeql  20982  lspextmo  20983  islmim  20989  lmiclcl  20997  lmhmlvec  21037  lindfmm  21757  lindsmm  21758  lmhmclm  25007  lmhmimasvsca  33010  lmhmqusker  33372  kercvrlsm  43095  lmhmfgima  43096  lmhmfgsplit  43098  lmhmlnmsplit  43099
  Copyright terms: Public domain W3C validator