| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmlmod1 | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmlmod1 | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 2 | eqid 2730 | . . 3 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 3 | 1, 2 | lmhmlem 20956 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆)))) |
| 4 | 3 | simplld 767 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Scalarcsca 17156 GrpHom cghm 19117 LModclmod 20786 LMHom clmhm 20946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-lmhm 20949 |
| This theorem is referenced by: islmhm2 20965 lmhmco 20970 lmhmplusg 20971 lmhmvsca 20972 lmhmf1o 20973 lmhmima 20974 lmhmpreima 20975 lmhmlsp 20976 lmhmrnlss 20977 reslmhm 20979 reslmhm2 20980 reslmhm2b 20981 lmhmeql 20982 lspextmo 20983 islmim 20989 lmiclcl 20997 lmhmlvec 21037 lindfmm 21757 lindsmm 21758 lmhmclm 25007 lmhmimasvsca 33010 lmhmqusker 33372 kercvrlsm 43095 lmhmfgima 43096 lmhmfgsplit 43098 lmhmlnmsplit 43099 |
| Copyright terms: Public domain | W3C validator |