MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod1 Structured version   Visualization version   GIF version

Theorem lmhmlmod1 20972
Description: A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)

Proof of Theorem lmhmlmod1
StepHypRef Expression
1 eqid 2729 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2729 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 20968 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
43simplld 767 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Scalarcsca 17199   GrpHom cghm 19126  LModclmod 20798   LMHom clmhm 20958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-lmhm 20961
This theorem is referenced by:  islmhm2  20977  lmhmco  20982  lmhmplusg  20983  lmhmvsca  20984  lmhmf1o  20985  lmhmima  20986  lmhmpreima  20987  lmhmlsp  20988  lmhmrnlss  20989  reslmhm  20991  reslmhm2  20992  reslmhm2b  20993  lmhmeql  20994  lspextmo  20995  islmim  21001  lmiclcl  21009  lmhmlvec  21049  lindfmm  21769  lindsmm  21770  lmhmclm  25020  lmhmimasvsca  33023  lmhmqusker  33381  kercvrlsm  43065  lmhmfgima  43066  lmhmfgsplit  43068  lmhmlnmsplit  43069
  Copyright terms: Public domain W3C validator