| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmlmod1 | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmlmod1 | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 2 | eqid 2736 | . . 3 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 3 | 1, 2 | lmhmlem 20992 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆)))) |
| 4 | 3 | simplld 767 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Scalarcsca 17279 GrpHom cghm 19200 LModclmod 20822 LMHom clmhm 20982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-lmhm 20985 |
| This theorem is referenced by: islmhm2 21001 lmhmco 21006 lmhmplusg 21007 lmhmvsca 21008 lmhmf1o 21009 lmhmima 21010 lmhmpreima 21011 lmhmlsp 21012 lmhmrnlss 21013 reslmhm 21015 reslmhm2 21016 reslmhm2b 21017 lmhmeql 21018 lspextmo 21019 islmim 21025 lmiclcl 21033 lmhmlvec 21073 lindfmm 21792 lindsmm 21793 lmhmclm 25043 lmhmimasvsca 33039 lmhmqusker 33437 kercvrlsm 43082 lmhmfgima 43083 lmhmfgsplit 43085 lmhmlnmsplit 43086 |
| Copyright terms: Public domain | W3C validator |