Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaf Structured version   Visualization version   GIF version

Theorem meaf 46473
Description: A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaf.m (𝜑𝑀 ∈ Meas)
meaf.s 𝑆 = dom 𝑀
Assertion
Ref Expression
meaf (𝜑𝑀:𝑆⟶(0[,]+∞))

Proof of Theorem meaf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaf.m . . . . 5 (𝜑𝑀 ∈ Meas)
2 ismea 46471 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
31, 2sylib 218 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
43simpld 494 . . 3 (𝜑 → ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0))
54simplld 767 . 2 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
6 meaf.s . . . 4 𝑆 = dom 𝑀
76a1i 11 . . 3 (𝜑𝑆 = dom 𝑀)
87feq2d 6721 . 2 (𝜑 → (𝑀:𝑆⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞)))
95, 8mpbird 257 1 (𝜑𝑀:𝑆⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  c0 4332  𝒫 cpw 4599   cuni 4906  Disj wdisj 5109   class class class wbr 5142  dom cdm 5684  cres 5686  wf 6556  cfv 6560  (class class class)co 7432  ωcom 7888  cdom 8984  0cc0 11156  +∞cpnf 11293  [,]cicc 13391  SAlgcsalg 46328  Σ^csumge0 46382  Meascmea 46469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-mea 46470
This theorem is referenced by:  meacl  46478  meadjun  46482  meadjiunlem  46485  meadjiun  46486
  Copyright terms: Public domain W3C validator