Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaf Structured version   Visualization version   GIF version

Theorem meaf 45627
Description: A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaf.m (𝜑𝑀 ∈ Meas)
meaf.s 𝑆 = dom 𝑀
Assertion
Ref Expression
meaf (𝜑𝑀:𝑆⟶(0[,]+∞))

Proof of Theorem meaf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaf.m . . . . 5 (𝜑𝑀 ∈ Meas)
2 ismea 45625 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
31, 2sylib 217 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
43simpld 494 . . 3 (𝜑 → ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0))
54simplld 765 . 2 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
6 meaf.s . . . 4 𝑆 = dom 𝑀
76a1i 11 . . 3 (𝜑𝑆 = dom 𝑀)
87feq2d 6703 . 2 (𝜑 → (𝑀:𝑆⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞)))
95, 8mpbird 257 1 (𝜑𝑀:𝑆⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  c0 4322  𝒫 cpw 4602   cuni 4908  Disj wdisj 5113   class class class wbr 5148  dom cdm 5676  cres 5678  wf 6539  cfv 6543  (class class class)co 7412  ωcom 7859  cdom 8943  0cc0 11116  +∞cpnf 11252  [,]cicc 13334  SAlgcsalg 45482  Σ^csumge0 45536  Meascmea 45623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-mea 45624
This theorem is referenced by:  meacl  45632  meadjun  45636  meadjiunlem  45639  meadjiun  45640
  Copyright terms: Public domain W3C validator