![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaf | Structured version Visualization version GIF version |
Description: A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meaf.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaf.s | ⊢ 𝑆 = dom 𝑀 |
Ref | Expression |
---|---|
meaf | ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaf.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | ismea 45625 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
4 | 3 | simpld 494 | . . 3 ⊢ (𝜑 → ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0)) |
5 | 4 | simplld 765 | . 2 ⊢ (𝜑 → 𝑀:dom 𝑀⟶(0[,]+∞)) |
6 | meaf.s | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom 𝑀) |
8 | 7 | feq2d 6703 | . 2 ⊢ (𝜑 → (𝑀:𝑆⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞))) |
9 | 5, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∅c0 4322 𝒫 cpw 4602 ∪ cuni 4908 Disj wdisj 5113 class class class wbr 5148 dom cdm 5676 ↾ cres 5678 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ωcom 7859 ≼ cdom 8943 0cc0 11116 +∞cpnf 11252 [,]cicc 13334 SAlgcsalg 45482 Σ^csumge0 45536 Meascmea 45623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-mea 45624 |
This theorem is referenced by: meacl 45632 meadjun 45636 meadjiunlem 45639 meadjiun 45640 |
Copyright terms: Public domain | W3C validator |