|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaf | Structured version Visualization version GIF version | ||
| Description: A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| meaf.m | ⊢ (𝜑 → 𝑀 ∈ Meas) | 
| meaf.s | ⊢ 𝑆 = dom 𝑀 | 
| Ref | Expression | 
|---|---|
| meaf | ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | meaf.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 2 | ismea 46471 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | 
| 4 | 3 | simpld 494 | . . 3 ⊢ (𝜑 → ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0)) | 
| 5 | 4 | simplld 767 | . 2 ⊢ (𝜑 → 𝑀:dom 𝑀⟶(0[,]+∞)) | 
| 6 | meaf.s | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom 𝑀) | 
| 8 | 7 | feq2d 6721 | . 2 ⊢ (𝜑 → (𝑀:𝑆⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞))) | 
| 9 | 5, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∅c0 4332 𝒫 cpw 4599 ∪ cuni 4906 Disj wdisj 5109 class class class wbr 5142 dom cdm 5684 ↾ cres 5686 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ωcom 7888 ≼ cdom 8984 0cc0 11156 +∞cpnf 11293 [,]cicc 13391 SAlgcsalg 46328 Σ^csumge0 46382 Meascmea 46469 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-mea 46470 | 
| This theorem is referenced by: meacl 46478 meadjun 46482 meadjiunlem 46485 meadjiun 46486 | 
| Copyright terms: Public domain | W3C validator |