![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaf | Structured version Visualization version GIF version |
Description: A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meaf.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaf.s | ⊢ 𝑆 = dom 𝑀 |
Ref | Expression |
---|---|
meaf | ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaf.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | ismea 41596 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
3 | 1, 2 | sylib 210 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
4 | 3 | simpld 490 | . . 3 ⊢ (𝜑 → ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0)) |
5 | 4 | simplld 758 | . 2 ⊢ (𝜑 → 𝑀:dom 𝑀⟶(0[,]+∞)) |
6 | meaf.s | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom 𝑀) |
8 | 7 | feq2d 6277 | . 2 ⊢ (𝜑 → (𝑀:𝑆⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞))) |
9 | 5, 8 | mpbird 249 | 1 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∅c0 4141 𝒫 cpw 4379 ∪ cuni 4671 Disj wdisj 4854 class class class wbr 4886 dom cdm 5355 ↾ cres 5357 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ωcom 7343 ≼ cdom 8239 0cc0 10272 +∞cpnf 10408 [,]cicc 12490 SAlgcsalg 41456 Σ^csumge0 41507 Meascmea 41594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-mea 41595 |
This theorem is referenced by: meacl 41603 meadjun 41607 meadjiunlem 41610 meadjiun 41611 |
Copyright terms: Public domain | W3C validator |