Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaf | Structured version Visualization version GIF version |
Description: A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meaf.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaf.s | ⊢ 𝑆 = dom 𝑀 |
Ref | Expression |
---|---|
meaf | ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaf.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
2 | ismea 44039 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
4 | 3 | simpld 496 | . . 3 ⊢ (𝜑 → ((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0)) |
5 | 4 | simplld 766 | . 2 ⊢ (𝜑 → 𝑀:dom 𝑀⟶(0[,]+∞)) |
6 | meaf.s | . . . 4 ⊢ 𝑆 = dom 𝑀 | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom 𝑀) |
8 | 7 | feq2d 6616 | . 2 ⊢ (𝜑 → (𝑀:𝑆⟶(0[,]+∞) ↔ 𝑀:dom 𝑀⟶(0[,]+∞))) |
9 | 5, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∅c0 4262 𝒫 cpw 4539 ∪ cuni 4844 Disj wdisj 5046 class class class wbr 5081 dom cdm 5600 ↾ cres 5602 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ωcom 7744 ≼ cdom 8762 0cc0 10917 +∞cpnf 11052 [,]cicc 13128 SAlgcsalg 43898 Σ^csumge0 43950 Meascmea 44037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-mea 44038 |
This theorem is referenced by: meacl 44046 meadjun 44050 meadjiunlem 44053 meadjiun 44054 |
Copyright terms: Public domain | W3C validator |