| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexdvdsi | Structured version Visualization version GIF version | ||
| Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexid.3 | ⊢ · = (.g‘𝐺) |
| gexid.4 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gexdvdsi | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∥ 𝑁) | |
| 2 | dvdszrcl 16170 | . . . . 5 ⊢ (𝐸 ∥ 𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 3 | divides 16167 | . . . . 5 ⊢ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) | |
| 4 | 2, 3 | biadanii 821 | . . . 4 ⊢ (𝐸 ∥ 𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
| 5 | 1, 4 | sylib 218 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
| 6 | 5 | simprd 495 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁) |
| 7 | simpl1 1192 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp) | |
| 8 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
| 9 | 5 | simplld 767 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∈ ℤ) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ) |
| 11 | simpl2 1193 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
| 12 | gexcl.1 | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐺) | |
| 13 | gexid.3 | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
| 14 | 12, 13 | mulgass 19026 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
| 15 | 7, 8, 10, 11, 14 | syl13anc 1374 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
| 16 | gexcl.2 | . . . . . . . 8 ⊢ 𝐸 = (gEx‘𝐺) | |
| 17 | gexid.4 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
| 18 | 12, 16, 13, 17 | gexid 19495 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
| 19 | 11, 18 | syl 17 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 ) |
| 20 | 19 | oveq2d 7368 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 )) |
| 21 | 12, 13, 17 | mulgz 19017 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
| 22 | 21 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
| 23 | 15, 20, 22 | 3eqtrd 2772 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 ) |
| 24 | oveq1 7359 | . . . . 5 ⊢ ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴)) | |
| 25 | 24 | eqeq1d 2735 | . . . 4 ⊢ ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
| 26 | 23, 25 | syl5ibcom 245 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
| 27 | 26 | rexlimdva 3134 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
| 28 | 6, 27 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 · cmul 11018 ℤcz 12475 ∥ cdvds 16165 Basecbs 17122 0gc0g 17345 Grpcgrp 18848 .gcmg 18982 gExcgex 19439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-seq 13911 df-dvds 16166 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-mulg 18983 df-gex 19443 |
| This theorem is referenced by: gexdvds 19498 gex2abl 19765 |
| Copyright terms: Public domain | W3C validator |