MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvdsi Structured version   Visualization version   GIF version

Theorem gexdvdsi 19520
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvdsi ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )

Proof of Theorem gexdvdsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸𝑁)
2 dvdszrcl 16234 . . . . 5 (𝐸𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 16231 . . . . 5 ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
42, 3biadanii 821 . . . 4 (𝐸𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
51, 4sylib 218 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
65simprd 495 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)
7 simpl1 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
8 simpr 484 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
95simplld 767 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸 ∈ ℤ)
109adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ)
11 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
12 gexcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
13 gexid.3 . . . . . . 7 · = (.g𝐺)
1412, 13mulgass 19050 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
157, 8, 10, 11, 14syl13anc 1374 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
16 gexcl.2 . . . . . . . 8 𝐸 = (gEx‘𝐺)
17 gexid.4 . . . . . . . 8 0 = (0g𝐺)
1812, 16, 13, 17gexid 19518 . . . . . . 7 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
1911, 18syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 )
2019oveq2d 7406 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 ))
2112, 13, 17mulgz 19041 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
22213ad2antl1 1186 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
2315, 20, 223eqtrd 2769 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 )
24 oveq1 7397 . . . . 5 ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴))
2524eqeq1d 2732 . . . 4 ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
2623, 25syl5ibcom 245 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
2726rexlimdva 3135 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
286, 27mpd 15 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390   · cmul 11080  cz 12536  cdvds 16229  Basecbs 17186  0gc0g 17409  Grpcgrp 18872  .gcmg 19006  gExcgex 19462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-dvds 16230  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-mulg 19007  df-gex 19466
This theorem is referenced by:  gexdvds  19521  gex2abl  19788
  Copyright terms: Public domain W3C validator