![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexdvdsi | Structured version Visualization version GIF version |
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexid.3 | ⊢ · = (.g‘𝐺) |
gexid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gexdvdsi | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∥ 𝑁) | |
2 | dvdszrcl 16133 | . . . . 5 ⊢ (𝐸 ∥ 𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
3 | divides 16130 | . . . . 5 ⊢ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) | |
4 | 2, 3 | biadanii 820 | . . . 4 ⊢ (𝐸 ∥ 𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
5 | 1, 4 | sylib 217 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
6 | 5 | simprd 496 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁) |
7 | simpl1 1191 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp) | |
8 | simpr 485 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
9 | 5 | simplld 766 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∈ ℤ) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ) |
11 | simpl2 1192 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
12 | gexcl.1 | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐺) | |
13 | gexid.3 | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
14 | 12, 13 | mulgass 18904 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
15 | 7, 8, 10, 11, 14 | syl13anc 1372 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
16 | gexcl.2 | . . . . . . . 8 ⊢ 𝐸 = (gEx‘𝐺) | |
17 | gexid.4 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
18 | 12, 16, 13, 17 | gexid 19354 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
19 | 11, 18 | syl 17 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 ) |
20 | 19 | oveq2d 7369 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 )) |
21 | 12, 13, 17 | mulgz 18895 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
22 | 21 | 3ad2antl1 1185 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
23 | 15, 20, 22 | 3eqtrd 2780 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 ) |
24 | oveq1 7360 | . . . . 5 ⊢ ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴)) | |
25 | 24 | eqeq1d 2738 | . . . 4 ⊢ ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
26 | 23, 25 | syl5ibcom 244 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
27 | 26 | rexlimdva 3150 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
28 | 6, 27 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 class class class wbr 5103 ‘cfv 6493 (class class class)co 7353 · cmul 11052 ℤcz 12495 ∥ cdvds 16128 Basecbs 17075 0gc0g 17313 Grpcgrp 18740 .gcmg 18863 gExcgex 19298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7799 df-1st 7917 df-2nd 7918 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-er 8644 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9374 df-inf 9375 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-nn 12150 df-n0 12410 df-z 12496 df-uz 12760 df-fz 13417 df-seq 13899 df-dvds 16129 df-0g 17315 df-mgm 18489 df-sgrp 18538 df-mnd 18549 df-grp 18743 df-minusg 18744 df-mulg 18864 df-gex 19302 |
This theorem is referenced by: gexdvds 19357 gex2abl 19620 |
Copyright terms: Public domain | W3C validator |