MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvdsi Structured version   Visualization version   GIF version

Theorem gexdvdsi 19497
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvdsi ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )

Proof of Theorem gexdvdsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸𝑁)
2 dvdszrcl 16170 . . . . 5 (𝐸𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 16167 . . . . 5 ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
42, 3biadanii 821 . . . 4 (𝐸𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
51, 4sylib 218 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
65simprd 495 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)
7 simpl1 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
8 simpr 484 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
95simplld 767 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸 ∈ ℤ)
109adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ)
11 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
12 gexcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
13 gexid.3 . . . . . . 7 · = (.g𝐺)
1412, 13mulgass 19026 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
157, 8, 10, 11, 14syl13anc 1374 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
16 gexcl.2 . . . . . . . 8 𝐸 = (gEx‘𝐺)
17 gexid.4 . . . . . . . 8 0 = (0g𝐺)
1812, 16, 13, 17gexid 19495 . . . . . . 7 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
1911, 18syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 )
2019oveq2d 7368 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 ))
2112, 13, 17mulgz 19017 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
22213ad2antl1 1186 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
2315, 20, 223eqtrd 2772 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 )
24 oveq1 7359 . . . . 5 ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴))
2524eqeq1d 2735 . . . 4 ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
2623, 25syl5ibcom 245 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
2726rexlimdva 3134 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
286, 27mpd 15 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352   · cmul 11018  cz 12475  cdvds 16165  Basecbs 17122  0gc0g 17345  Grpcgrp 18848  .gcmg 18982  gExcgex 19439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-seq 13911  df-dvds 16166  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-mulg 18983  df-gex 19443
This theorem is referenced by:  gexdvds  19498  gex2abl  19765
  Copyright terms: Public domain W3C validator