MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvdsi Structured version   Visualization version   GIF version

Theorem gexdvdsi 19356
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvdsi ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )

Proof of Theorem gexdvdsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸𝑁)
2 dvdszrcl 16133 . . . . 5 (𝐸𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 16130 . . . . 5 ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
42, 3biadanii 820 . . . 4 (𝐸𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
51, 4sylib 217 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
65simprd 496 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)
7 simpl1 1191 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
8 simpr 485 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
95simplld 766 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸 ∈ ℤ)
109adantr 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ)
11 simpl2 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
12 gexcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
13 gexid.3 . . . . . . 7 · = (.g𝐺)
1412, 13mulgass 18904 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
157, 8, 10, 11, 14syl13anc 1372 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
16 gexcl.2 . . . . . . . 8 𝐸 = (gEx‘𝐺)
17 gexid.4 . . . . . . . 8 0 = (0g𝐺)
1812, 16, 13, 17gexid 19354 . . . . . . 7 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
1911, 18syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 )
2019oveq2d 7369 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 ))
2112, 13, 17mulgz 18895 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
22213ad2antl1 1185 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
2315, 20, 223eqtrd 2780 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 )
24 oveq1 7360 . . . . 5 ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴))
2524eqeq1d 2738 . . . 4 ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
2623, 25syl5ibcom 244 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
2726rexlimdva 3150 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
286, 27mpd 15 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3071   class class class wbr 5103  cfv 6493  (class class class)co 7353   · cmul 11052  cz 12495  cdvds 16128  Basecbs 17075  0gc0g 17313  Grpcgrp 18740  .gcmg 18863  gExcgex 19298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9374  df-inf 9375  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-nn 12150  df-n0 12410  df-z 12496  df-uz 12760  df-fz 13417  df-seq 13899  df-dvds 16129  df-0g 17315  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-grp 18743  df-minusg 18744  df-mulg 18864  df-gex 19302
This theorem is referenced by:  gexdvds  19357  gex2abl  19620
  Copyright terms: Public domain W3C validator