| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexdvdsi | Structured version Visualization version GIF version | ||
| Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexid.3 | ⊢ · = (.g‘𝐺) |
| gexid.4 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gexdvdsi | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∥ 𝑁) | |
| 2 | dvdszrcl 16165 | . . . . 5 ⊢ (𝐸 ∥ 𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 3 | divides 16162 | . . . . 5 ⊢ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) | |
| 4 | 2, 3 | biadanii 821 | . . . 4 ⊢ (𝐸 ∥ 𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
| 5 | 1, 4 | sylib 218 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
| 6 | 5 | simprd 495 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁) |
| 7 | simpl1 1192 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp) | |
| 8 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
| 9 | 5 | simplld 767 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∈ ℤ) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ) |
| 11 | simpl2 1193 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
| 12 | gexcl.1 | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐺) | |
| 13 | gexid.3 | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
| 14 | 12, 13 | mulgass 19021 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
| 15 | 7, 8, 10, 11, 14 | syl13anc 1374 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
| 16 | gexcl.2 | . . . . . . . 8 ⊢ 𝐸 = (gEx‘𝐺) | |
| 17 | gexid.4 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
| 18 | 12, 16, 13, 17 | gexid 19491 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
| 19 | 11, 18 | syl 17 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 ) |
| 20 | 19 | oveq2d 7362 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 )) |
| 21 | 12, 13, 17 | mulgz 19012 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
| 22 | 21 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
| 23 | 15, 20, 22 | 3eqtrd 2770 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 ) |
| 24 | oveq1 7353 | . . . . 5 ⊢ ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴)) | |
| 25 | 24 | eqeq1d 2733 | . . . 4 ⊢ ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
| 26 | 23, 25 | syl5ibcom 245 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
| 27 | 26 | rexlimdva 3133 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
| 28 | 6, 27 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 · cmul 11008 ℤcz 12465 ∥ cdvds 16160 Basecbs 17117 0gc0g 17340 Grpcgrp 18843 .gcmg 18977 gExcgex 19435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-seq 13906 df-dvds 16161 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-mulg 18978 df-gex 19439 |
| This theorem is referenced by: gexdvds 19494 gex2abl 19761 |
| Copyright terms: Public domain | W3C validator |