Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvdsi Structured version   Visualization version   GIF version

Theorem gexdvdsi 18768
 Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvdsi ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )

Proof of Theorem gexdvdsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1136 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸𝑁)
2 dvdszrcl 15653 . . . . 5 (𝐸𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 15650 . . . . 5 ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
42, 3biadanii 822 . . . 4 (𝐸𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
51, 4sylib 221 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
65simprd 500 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)
7 simpl1 1189 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
8 simpr 489 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
95simplld 768 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸 ∈ ℤ)
109adantr 485 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ)
11 simpl2 1190 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
12 gexcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
13 gexid.3 . . . . . . 7 · = (.g𝐺)
1412, 13mulgass 18324 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
157, 8, 10, 11, 14syl13anc 1370 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
16 gexcl.2 . . . . . . . 8 𝐸 = (gEx‘𝐺)
17 gexid.4 . . . . . . . 8 0 = (0g𝐺)
1812, 16, 13, 17gexid 18766 . . . . . . 7 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
1911, 18syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 )
2019oveq2d 7167 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 ))
2112, 13, 17mulgz 18315 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
22213ad2antl1 1183 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
2315, 20, 223eqtrd 2798 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 )
24 oveq1 7158 . . . . 5 ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴))
2524eqeq1d 2761 . . . 4 ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
2623, 25syl5ibcom 248 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
2726rexlimdva 3209 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
286, 27mpd 15 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∃wrex 3072   class class class wbr 5033  ‘cfv 6336  (class class class)co 7151   · cmul 10573  ℤcz 12013   ∥ cdvds 15648  Basecbs 16534  0gc0g 16764  Grpcgrp 18162  .gcmg 18284  gExcgex 18713 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-sup 8932  df-inf 8933  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-n0 11928  df-z 12014  df-uz 12276  df-fz 12933  df-seq 13412  df-dvds 15649  df-0g 16766  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-grp 18165  df-minusg 18166  df-mulg 18285  df-gex 18717 This theorem is referenced by:  gexdvds  18769  gex2abl  19032
 Copyright terms: Public domain W3C validator