MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvdsi Structured version   Visualization version   GIF version

Theorem gexdvdsi 19513
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvdsi ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )

Proof of Theorem gexdvdsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸𝑁)
2 dvdszrcl 16227 . . . . 5 (𝐸𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 16224 . . . . 5 ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
42, 3biadanii 821 . . . 4 (𝐸𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
51, 4sylib 218 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁))
65simprd 495 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)
7 simpl1 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
8 simpr 484 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
95simplld 767 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → 𝐸 ∈ ℤ)
109adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ)
11 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
12 gexcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
13 gexid.3 . . . . . . 7 · = (.g𝐺)
1412, 13mulgass 19043 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
157, 8, 10, 11, 14syl13anc 1374 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴)))
16 gexcl.2 . . . . . . . 8 𝐸 = (gEx‘𝐺)
17 gexid.4 . . . . . . . 8 0 = (0g𝐺)
1812, 16, 13, 17gexid 19511 . . . . . . 7 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
1911, 18syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 )
2019oveq2d 7403 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 ))
2112, 13, 17mulgz 19034 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
22213ad2antl1 1186 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 )
2315, 20, 223eqtrd 2768 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 )
24 oveq1 7394 . . . . 5 ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴))
2524eqeq1d 2731 . . . 4 ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
2623, 25syl5ibcom 245 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
2726rexlimdva 3134 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 ))
286, 27mpd 15 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐸𝑁) → (𝑁 · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387   · cmul 11073  cz 12529  cdvds 16222  Basecbs 17179  0gc0g 17402  Grpcgrp 18865  .gcmg 18999  gExcgex 19455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-dvds 16223  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-mulg 19000  df-gex 19459
This theorem is referenced by:  gexdvds  19514  gex2abl  19781
  Copyright terms: Public domain W3C validator