![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexdvdsi | Structured version Visualization version GIF version |
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexid.3 | ⊢ · = (.g‘𝐺) |
gexid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gexdvdsi | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∥ 𝑁) | |
2 | dvdszrcl 16292 | . . . . 5 ⊢ (𝐸 ∥ 𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
3 | divides 16289 | . . . . 5 ⊢ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) | |
4 | 2, 3 | biadanii 822 | . . . 4 ⊢ (𝐸 ∥ 𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
5 | 1, 4 | sylib 218 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
6 | 5 | simprd 495 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁) |
7 | simpl1 1190 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp) | |
8 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
9 | 5 | simplld 768 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∈ ℤ) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ) |
11 | simpl2 1191 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
12 | gexcl.1 | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐺) | |
13 | gexid.3 | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
14 | 12, 13 | mulgass 19142 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
15 | 7, 8, 10, 11, 14 | syl13anc 1371 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
16 | gexcl.2 | . . . . . . . 8 ⊢ 𝐸 = (gEx‘𝐺) | |
17 | gexid.4 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
18 | 12, 16, 13, 17 | gexid 19614 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
19 | 11, 18 | syl 17 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 ) |
20 | 19 | oveq2d 7447 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 )) |
21 | 12, 13, 17 | mulgz 19133 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
22 | 21 | 3ad2antl1 1184 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
23 | 15, 20, 22 | 3eqtrd 2779 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 ) |
24 | oveq1 7438 | . . . . 5 ⊢ ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴)) | |
25 | 24 | eqeq1d 2737 | . . . 4 ⊢ ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
26 | 23, 25 | syl5ibcom 245 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
27 | 26 | rexlimdva 3153 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
28 | 6, 27 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 · cmul 11158 ℤcz 12611 ∥ cdvds 16287 Basecbs 17245 0gc0g 17486 Grpcgrp 18964 .gcmg 19098 gExcgex 19558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-seq 14040 df-dvds 16288 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-mulg 19099 df-gex 19562 |
This theorem is referenced by: gexdvds 19617 gex2abl 19884 |
Copyright terms: Public domain | W3C validator |