Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gexdvdsi | Structured version Visualization version GIF version |
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexid.3 | ⊢ · = (.g‘𝐺) |
gexid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gexdvdsi | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∥ 𝑁) | |
2 | dvdszrcl 15968 | . . . . 5 ⊢ (𝐸 ∥ 𝑁 → (𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
3 | divides 15965 | . . . . 5 ⊢ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) | |
4 | 2, 3 | biadanii 819 | . . . 4 ⊢ (𝐸 ∥ 𝑁 ↔ ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
5 | 1, 4 | sylib 217 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ((𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁)) |
6 | 5 | simprd 496 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁) |
7 | simpl1 1190 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp) | |
8 | simpr 485 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
9 | 5 | simplld 765 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → 𝐸 ∈ ℤ) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐸 ∈ ℤ) |
11 | simpl2 1191 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
12 | gexcl.1 | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐺) | |
13 | gexid.3 | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
14 | 12, 13 | mulgass 18740 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
15 | 7, 8, 10, 11, 14 | syl13anc 1371 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = (𝑥 · (𝐸 · 𝐴))) |
16 | gexcl.2 | . . . . . . . 8 ⊢ 𝐸 = (gEx‘𝐺) | |
17 | gexid.4 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
18 | 12, 16, 13, 17 | gexid 19186 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
19 | 11, 18 | syl 17 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝐸 · 𝐴) = 0 ) |
20 | 19 | oveq2d 7291 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐸 · 𝐴)) = (𝑥 · 0 )) |
21 | 12, 13, 17 | mulgz 18731 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
22 | 21 | 3ad2antl1 1184 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → (𝑥 · 0 ) = 0 ) |
23 | 15, 20, 22 | 3eqtrd 2782 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) · 𝐴) = 0 ) |
24 | oveq1 7282 | . . . . 5 ⊢ ((𝑥 · 𝐸) = 𝑁 → ((𝑥 · 𝐸) · 𝐴) = (𝑁 · 𝐴)) | |
25 | 24 | eqeq1d 2740 | . . . 4 ⊢ ((𝑥 · 𝐸) = 𝑁 → (((𝑥 · 𝐸) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
26 | 23, 25 | syl5ibcom 244 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
27 | 26 | rexlimdva 3213 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (∃𝑥 ∈ ℤ (𝑥 · 𝐸) = 𝑁 → (𝑁 · 𝐴) = 0 )) |
28 | 6, 27 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 · cmul 10876 ℤcz 12319 ∥ cdvds 15963 Basecbs 16912 0gc0g 17150 Grpcgrp 18577 .gcmg 18700 gExcgex 19133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 df-dvds 15964 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mulg 18701 df-gex 19137 |
This theorem is referenced by: gexdvds 19189 gex2abl 19452 |
Copyright terms: Public domain | W3C validator |