Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem37 Structured version   Visualization version   GIF version

Theorem fourierdlem37 45561
Description: 𝐼 is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem37.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem37.m (𝜑𝑀 ∈ ℕ)
fourierdlem37.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem37.t 𝑇 = (𝐵𝐴)
fourierdlem37.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem37.l 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem37.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem37 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Distinct variable groups:   𝐴,𝑚,𝑝   𝑥,𝐴,𝑦   𝐵,𝑚,𝑝   𝑥,𝐵,𝑦   𝑖,𝐸   𝑦,𝐸   𝑖,𝐿   𝑖,𝑀,𝑚,𝑝   𝑥,𝑀,𝑖   𝑄,𝑖,𝑝   𝑥,𝑇   𝜑,𝑖,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑥,𝑦,𝑖,𝑚,𝑝)   𝑄(𝑥,𝑦,𝑚)   𝑇(𝑦,𝑖,𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐼(𝑥,𝑦,𝑖,𝑚,𝑝)   𝐿(𝑥,𝑦,𝑚,𝑝)   𝑀(𝑦)

Proof of Theorem fourierdlem37
StepHypRef Expression
1 ssrab2 4077 . . . 4 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0..^𝑀)
2 ltso 11332 . . . . . 6 < Or ℝ
32a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → < Or ℝ)
4 fzfi 13977 . . . . . . 7 (0...𝑀) ∈ Fin
5 fzossfz 13691 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
61, 5sstri 3991 . . . . . . 7 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)
7 ssfi 9204 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
84, 6, 7mp2an 690 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin
98a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
10 0zd 12608 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
11 fourierdlem37.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
1211nnzd 12623 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1311nngt0d 12299 . . . . . . . . 9 (𝜑 → 0 < 𝑀)
14 fzolb 13678 . . . . . . . . 9 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
1510, 12, 13, 14syl3anbrc 1340 . . . . . . . 8 (𝜑 → 0 ∈ (0..^𝑀))
1615adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 0 ∈ (0..^𝑀))
17 fourierdlem37.q . . . . . . . . . . . . . . . 16 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem37.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1918fourierdlem2 45526 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2011, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2117, 20mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2221simprd 494 . . . . . . . . . . . . . 14 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2322simplld 766 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) = 𝐴)
2418, 11, 17fourierdlem11 45535 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
2524simp1d 1139 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
2623, 25eqeltrd 2829 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
2726, 23eqled 11355 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) ≤ 𝐴)
2827ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ 𝐴)
29 iftrue 4538 . . . . . . . . . . . 12 ((𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = 𝐴)
3029eqcomd 2734 . . . . . . . . . . 11 ((𝐸𝑥) = 𝐵𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3130adantl 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → 𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3228, 31breqtrd 5178 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3326adantr 479 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ∈ ℝ)
3425adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
3534rexrd 11302 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
3624simp2d 1140 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
3736adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
38 iocssre 13444 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
3935, 37, 38syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
4024simp3d 1141 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝐵)
41 fourierdlem37.t . . . . . . . . . . . . . . 15 𝑇 = (𝐵𝐴)
42 fourierdlem37.e . . . . . . . . . . . . . . 15 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4325, 36, 40, 41, 42fourierdlem4 45528 . . . . . . . . . . . . . 14 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
4443ffvelcdmda 7099 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
4539, 44sseldd 3983 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ ℝ)
4623adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) = 𝐴)
47 elioc2 13427 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4835, 37, 47syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4944, 48mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵))
5049simp2d 1140 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝐸𝑥))
5146, 50eqbrtrd 5174 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) < (𝐸𝑥))
5233, 45, 51ltled 11400 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐸𝑥))
5352adantr 479 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ (𝐸𝑥))
54 iffalse 4541 . . . . . . . . . . . 12 (¬ (𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = (𝐸𝑥))
5554eqcomd 2734 . . . . . . . . . . 11 (¬ (𝐸𝑥) = 𝐵 → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5655adantl 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5753, 56breqtrd 5178 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5832, 57pm2.61dan 811 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
59 fourierdlem37.l . . . . . . . . . 10 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
6059a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)))
61 eqeq1 2732 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → (𝑦 = 𝐵 ↔ (𝐸𝑥) = 𝐵))
62 id 22 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → 𝑦 = (𝐸𝑥))
6361, 62ifbieq2d 4558 . . . . . . . . . 10 (𝑦 = (𝐸𝑥) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6463adantl 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 = (𝐸𝑥)) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6534, 45ifcld 4578 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) ∈ ℝ)
6660, 64, 44, 65fvmptd 7017 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐿‘(𝐸𝑥)) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6758, 66breqtrrd 5180 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐿‘(𝐸𝑥)))
68 fveq2 6902 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
6968breq1d 5162 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) ≤ (𝐿‘(𝐸𝑥)) ↔ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7069elrab 3684 . . . . . . 7 (0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7116, 67, 70sylanbrc 581 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
7271ne0d 4339 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅)
73 fzssz 13543 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
745, 73sstri 3991 . . . . . . . 8 (0..^𝑀) ⊆ ℤ
75 zssre 12603 . . . . . . . 8 ℤ ⊆ ℝ
7674, 75sstri 3991 . . . . . . 7 (0..^𝑀) ⊆ ℝ
771, 76sstri 3991 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ
7877a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)
79 fisupcl 9500 . . . . 5 (( < Or ℝ ∧ ({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
803, 9, 72, 78, 79syl13anc 1369 . . . 4 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
811, 80sselid 3980 . . 3 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ (0..^𝑀))
82 fourierdlem37.i . . 3 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
8381, 82fmptd 7129 . 2 (𝜑𝐼:ℝ⟶(0..^𝑀))
8480ex 411 . 2 (𝜑 → (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}))
8583, 84jca 510 1 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  {crab 3430  wss 3949  c0 4326  ifcif 4532   class class class wbr 5152  cmpt 5235   Or wor 5593  wf 6549  cfv 6553  (class class class)co 7426  m cmap 8851  Fincfn 8970  supcsup 9471  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151  *cxr 11285   < clt 11286  cle 11287  cmin 11482   / cdiv 11909  cn 12250  cz 12596  (,]cioc 13365  ...cfz 13524  ..^cfzo 13667  cfl 13795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-ioc 13369  df-fz 13525  df-fzo 13668  df-fl 13797
This theorem is referenced by:  fourierdlem79  45602  fourierdlem89  45612  fourierdlem90  45613  fourierdlem91  45614
  Copyright terms: Public domain W3C validator