Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem37 Structured version   Visualization version   GIF version

Theorem fourierdlem37 43575
Description: 𝐼 is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem37.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem37.m (𝜑𝑀 ∈ ℕ)
fourierdlem37.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem37.t 𝑇 = (𝐵𝐴)
fourierdlem37.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem37.l 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem37.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem37 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Distinct variable groups:   𝐴,𝑚,𝑝   𝑥,𝐴,𝑦   𝐵,𝑚,𝑝   𝑥,𝐵,𝑦   𝑖,𝐸   𝑦,𝐸   𝑖,𝐿   𝑖,𝑀,𝑚,𝑝   𝑥,𝑀,𝑖   𝑄,𝑖,𝑝   𝑥,𝑇   𝜑,𝑖,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑥,𝑦,𝑖,𝑚,𝑝)   𝑄(𝑥,𝑦,𝑚)   𝑇(𝑦,𝑖,𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐼(𝑥,𝑦,𝑖,𝑚,𝑝)   𝐿(𝑥,𝑦,𝑚,𝑝)   𝑀(𝑦)

Proof of Theorem fourierdlem37
StepHypRef Expression
1 ssrab2 4009 . . . 4 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0..^𝑀)
2 ltso 10986 . . . . . 6 < Or ℝ
32a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → < Or ℝ)
4 fzfi 13620 . . . . . . 7 (0...𝑀) ∈ Fin
5 fzossfz 13334 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
61, 5sstri 3926 . . . . . . 7 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)
7 ssfi 8918 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
84, 6, 7mp2an 688 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin
98a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
10 0zd 12261 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
11 fourierdlem37.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
1211nnzd 12354 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1311nngt0d 11952 . . . . . . . . 9 (𝜑 → 0 < 𝑀)
14 fzolb 13322 . . . . . . . . 9 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
1510, 12, 13, 14syl3anbrc 1341 . . . . . . . 8 (𝜑 → 0 ∈ (0..^𝑀))
1615adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 0 ∈ (0..^𝑀))
17 fourierdlem37.q . . . . . . . . . . . . . . . 16 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem37.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1918fourierdlem2 43540 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2011, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2117, 20mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2221simprd 495 . . . . . . . . . . . . . 14 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2322simplld 764 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) = 𝐴)
2418, 11, 17fourierdlem11 43549 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
2524simp1d 1140 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
2623, 25eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
2726, 23eqled 11008 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) ≤ 𝐴)
2827ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ 𝐴)
29 iftrue 4462 . . . . . . . . . . . 12 ((𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = 𝐴)
3029eqcomd 2744 . . . . . . . . . . 11 ((𝐸𝑥) = 𝐵𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3130adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → 𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3228, 31breqtrd 5096 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3326adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ∈ ℝ)
3425adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
3534rexrd 10956 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
3624simp2d 1141 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
3736adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
38 iocssre 13088 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
3935, 37, 38syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
4024simp3d 1142 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝐵)
41 fourierdlem37.t . . . . . . . . . . . . . . 15 𝑇 = (𝐵𝐴)
42 fourierdlem37.e . . . . . . . . . . . . . . 15 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4325, 36, 40, 41, 42fourierdlem4 43542 . . . . . . . . . . . . . 14 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
4443ffvelrnda 6943 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
4539, 44sseldd 3918 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ ℝ)
4623adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) = 𝐴)
47 elioc2 13071 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4835, 37, 47syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4944, 48mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵))
5049simp2d 1141 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝐸𝑥))
5146, 50eqbrtrd 5092 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) < (𝐸𝑥))
5233, 45, 51ltled 11053 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐸𝑥))
5352adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ (𝐸𝑥))
54 iffalse 4465 . . . . . . . . . . . 12 (¬ (𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = (𝐸𝑥))
5554eqcomd 2744 . . . . . . . . . . 11 (¬ (𝐸𝑥) = 𝐵 → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5655adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5753, 56breqtrd 5096 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5832, 57pm2.61dan 809 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
59 fourierdlem37.l . . . . . . . . . 10 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
6059a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)))
61 eqeq1 2742 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → (𝑦 = 𝐵 ↔ (𝐸𝑥) = 𝐵))
62 id 22 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → 𝑦 = (𝐸𝑥))
6361, 62ifbieq2d 4482 . . . . . . . . . 10 (𝑦 = (𝐸𝑥) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6463adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 = (𝐸𝑥)) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6534, 45ifcld 4502 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) ∈ ℝ)
6660, 64, 44, 65fvmptd 6864 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐿‘(𝐸𝑥)) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6758, 66breqtrrd 5098 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐿‘(𝐸𝑥)))
68 fveq2 6756 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
6968breq1d 5080 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) ≤ (𝐿‘(𝐸𝑥)) ↔ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7069elrab 3617 . . . . . . 7 (0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7116, 67, 70sylanbrc 582 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
7271ne0d 4266 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅)
73 fzssz 13187 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
745, 73sstri 3926 . . . . . . . 8 (0..^𝑀) ⊆ ℤ
75 zssre 12256 . . . . . . . 8 ℤ ⊆ ℝ
7674, 75sstri 3926 . . . . . . 7 (0..^𝑀) ⊆ ℝ
771, 76sstri 3926 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ
7877a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)
79 fisupcl 9158 . . . . 5 (( < Or ℝ ∧ ({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
803, 9, 72, 78, 79syl13anc 1370 . . . 4 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
811, 80sselid 3915 . . 3 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ (0..^𝑀))
82 fourierdlem37.i . . 3 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
8381, 82fmptd 6970 . 2 (𝜑𝐼:ℝ⟶(0..^𝑀))
8480ex 412 . 2 (𝜑 → (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}))
8583, 84jca 511 1 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  wss 3883  c0 4253  ifcif 4456   class class class wbr 5070  cmpt 5153   Or wor 5493  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  supcsup 9129  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  cz 12249  (,]cioc 13009  ...cfz 13168  ..^cfzo 13311  cfl 13438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioc 13013  df-fz 13169  df-fzo 13312  df-fl 13440
This theorem is referenced by:  fourierdlem79  43616  fourierdlem89  43626  fourierdlem90  43627  fourierdlem91  43628
  Copyright terms: Public domain W3C validator