Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem37 Structured version   Visualization version   GIF version

Theorem fourierdlem37 41806
Description: 𝐼 is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem37.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem37.m (𝜑𝑀 ∈ ℕ)
fourierdlem37.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem37.t 𝑇 = (𝐵𝐴)
fourierdlem37.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem37.l 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem37.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem37 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Distinct variable groups:   𝐴,𝑚,𝑝   𝑥,𝐴,𝑦   𝐵,𝑚,𝑝   𝑥,𝐵,𝑦   𝑖,𝐸   𝑦,𝐸   𝑖,𝐿   𝑖,𝑀,𝑚,𝑝   𝑥,𝑀,𝑖   𝑄,𝑖,𝑝   𝑥,𝑇   𝜑,𝑖,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑥,𝑦,𝑖,𝑚,𝑝)   𝑄(𝑥,𝑦,𝑚)   𝑇(𝑦,𝑖,𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐼(𝑥,𝑦,𝑖,𝑚,𝑝)   𝐿(𝑥,𝑦,𝑚,𝑝)   𝑀(𝑦)

Proof of Theorem fourierdlem37
StepHypRef Expression
1 ssrab2 3942 . . . 4 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0..^𝑀)
2 ltso 10513 . . . . . 6 < Or ℝ
32a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → < Or ℝ)
4 fzfi 13148 . . . . . . 7 (0...𝑀) ∈ Fin
5 fzossfz 12865 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
61, 5sstri 3863 . . . . . . 7 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)
7 ssfi 8525 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
84, 6, 7mp2an 679 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin
98a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
10 0zd 11798 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
11 fourierdlem37.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
1211nnzd 11892 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1311nngt0d 11482 . . . . . . . . 9 (𝜑 → 0 < 𝑀)
14 fzolb 12853 . . . . . . . . 9 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
1510, 12, 13, 14syl3anbrc 1323 . . . . . . . 8 (𝜑 → 0 ∈ (0..^𝑀))
1615adantr 473 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 0 ∈ (0..^𝑀))
17 fourierdlem37.q . . . . . . . . . . . . . . . 16 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem37.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1918fourierdlem2 41771 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2011, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2117, 20mpbid 224 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2221simprd 488 . . . . . . . . . . . . . 14 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2322simplld 755 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) = 𝐴)
2418, 11, 17fourierdlem11 41780 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
2524simp1d 1122 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
2623, 25eqeltrd 2860 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
2726, 23eqled 10535 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) ≤ 𝐴)
2827ad2antrr 713 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ 𝐴)
29 iftrue 4350 . . . . . . . . . . . 12 ((𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = 𝐴)
3029eqcomd 2778 . . . . . . . . . . 11 ((𝐸𝑥) = 𝐵𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3130adantl 474 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → 𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3228, 31breqtrd 4949 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3326adantr 473 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ∈ ℝ)
3425adantr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
3534rexrd 10482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
3624simp2d 1123 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
3736adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
38 iocssre 12625 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
3935, 37, 38syl2anc 576 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
4024simp3d 1124 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝐵)
41 fourierdlem37.t . . . . . . . . . . . . . . 15 𝑇 = (𝐵𝐴)
42 fourierdlem37.e . . . . . . . . . . . . . . 15 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4325, 36, 40, 41, 42fourierdlem4 41773 . . . . . . . . . . . . . 14 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
4443ffvelrnda 6670 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
4539, 44sseldd 3855 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ ℝ)
4623adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) = 𝐴)
47 elioc2 12608 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4835, 37, 47syl2anc 576 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4944, 48mpbid 224 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵))
5049simp2d 1123 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝐸𝑥))
5146, 50eqbrtrd 4945 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) < (𝐸𝑥))
5233, 45, 51ltled 10580 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐸𝑥))
5352adantr 473 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ (𝐸𝑥))
54 iffalse 4353 . . . . . . . . . . . 12 (¬ (𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = (𝐸𝑥))
5554eqcomd 2778 . . . . . . . . . . 11 (¬ (𝐸𝑥) = 𝐵 → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5655adantl 474 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5753, 56breqtrd 4949 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5832, 57pm2.61dan 800 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
59 fourierdlem37.l . . . . . . . . . 10 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
6059a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)))
61 eqeq1 2776 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → (𝑦 = 𝐵 ↔ (𝐸𝑥) = 𝐵))
62 id 22 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → 𝑦 = (𝐸𝑥))
6361, 62ifbieq2d 4369 . . . . . . . . . 10 (𝑦 = (𝐸𝑥) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6463adantl 474 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 = (𝐸𝑥)) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6534, 45ifcld 4389 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) ∈ ℝ)
6660, 64, 44, 65fvmptd 6595 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐿‘(𝐸𝑥)) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6758, 66breqtrrd 4951 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐿‘(𝐸𝑥)))
68 fveq2 6493 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
6968breq1d 4933 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) ≤ (𝐿‘(𝐸𝑥)) ↔ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7069elrab 3589 . . . . . . 7 (0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7116, 67, 70sylanbrc 575 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
7271ne0d 4182 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅)
73 fzssz 12718 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
745, 73sstri 3863 . . . . . . . 8 (0..^𝑀) ⊆ ℤ
75 zssre 11793 . . . . . . . 8 ℤ ⊆ ℝ
7674, 75sstri 3863 . . . . . . 7 (0..^𝑀) ⊆ ℝ
771, 76sstri 3863 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ
7877a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)
79 fisupcl 8720 . . . . 5 (( < Or ℝ ∧ ({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
803, 9, 72, 78, 79syl13anc 1352 . . . 4 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
811, 80sseldi 3852 . . 3 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ (0..^𝑀))
82 fourierdlem37.i . . 3 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
8381, 82fmptd 6695 . 2 (𝜑𝐼:ℝ⟶(0..^𝑀))
8480ex 405 . 2 (𝜑 → (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}))
8583, 84jca 504 1 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wral 3082  {crab 3086  wss 3825  c0 4173  ifcif 4344   class class class wbr 4923  cmpt 5002   Or wor 5318  wf 6178  cfv 6182  (class class class)co 6970  𝑚 cmap 8198  Fincfn 8298  supcsup 8691  cr 10326  0cc0 10327  1c1 10328   + caddc 10330   · cmul 10332  *cxr 10465   < clt 10466  cle 10467  cmin 10662   / cdiv 11090  cn 11431  cz 11786  (,]cioc 12548  ...cfz 12701  ..^cfzo 12842  cfl 12968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-n0 11701  df-z 11787  df-uz 12052  df-rp 12198  df-ioc 12552  df-fz 12702  df-fzo 12843  df-fl 12970
This theorem is referenced by:  fourierdlem79  41847  fourierdlem89  41857  fourierdlem90  41858  fourierdlem91  41859
  Copyright terms: Public domain W3C validator