![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmeasal | Structured version Visualization version GIF version |
Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
dmmeasal.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
dmmeasal.s | ⊢ 𝑆 = dom 𝑀 |
Ref | Expression |
---|---|
dmmeasal | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmeasal.s | . 2 ⊢ 𝑆 = dom 𝑀 | |
2 | dmmeasal.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
3 | ismea 45465 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
5 | 4 | simplld 764 | . . 3 ⊢ (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)) |
6 | 5 | simprd 494 | . 2 ⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
7 | 1, 6 | eqeltrid 2835 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∅c0 4321 𝒫 cpw 4601 ∪ cuni 4907 Disj wdisj 5112 class class class wbr 5147 dom cdm 5675 ↾ cres 5677 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 ωcom 7857 ≼ cdom 8939 0cc0 11112 +∞cpnf 11249 [,]cicc 13331 SAlgcsalg 45322 Σ^csumge0 45376 Meascmea 45463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-mea 45464 |
This theorem is referenced by: meadjuni 45471 meassle 45477 meaunle 45478 meaiunlelem 45482 meadif 45493 meaiuninclem 45494 meaiuninc3v 45498 meaiininclem 45500 dmovnsal 45626 hoimbllem 45644 ctvonmbl 45703 vonct 45707 |
Copyright terms: Public domain | W3C validator |