Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmeasal Structured version   Visualization version   GIF version

Theorem dmmeasal 45468
Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
dmmeasal.m (𝜑𝑀 ∈ Meas)
dmmeasal.s 𝑆 = dom 𝑀
Assertion
Ref Expression
dmmeasal (𝜑𝑆 ∈ SAlg)

Proof of Theorem dmmeasal
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmmeasal.s . 2 𝑆 = dom 𝑀
2 dmmeasal.m . . . . 5 (𝜑𝑀 ∈ Meas)
3 ismea 45467 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
42, 3sylib 217 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
54simplld 765 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
65simprd 495 . 2 (𝜑 → dom 𝑀 ∈ SAlg)
71, 6eqeltrid 2836 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  c0 4323  𝒫 cpw 4603   cuni 4909  Disj wdisj 5114   class class class wbr 5149  dom cdm 5677  cres 5679  wf 6540  cfv 6544  (class class class)co 7412  ωcom 7858  cdom 8940  0cc0 11113  +∞cpnf 11250  [,]cicc 13332  SAlgcsalg 45324  Σ^csumge0 45378  Meascmea 45465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-mea 45466
This theorem is referenced by:  meadjuni  45473  meassle  45479  meaunle  45480  meaiunlelem  45484  meadif  45495  meaiuninclem  45496  meaiuninc3v  45500  meaiininclem  45502  dmovnsal  45628  hoimbllem  45646  ctvonmbl  45705  vonct  45709
  Copyright terms: Public domain W3C validator