Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmeasal Structured version   Visualization version   GIF version

Theorem dmmeasal 45466
Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
dmmeasal.m (𝜑𝑀 ∈ Meas)
dmmeasal.s 𝑆 = dom 𝑀
Assertion
Ref Expression
dmmeasal (𝜑𝑆 ∈ SAlg)

Proof of Theorem dmmeasal
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmmeasal.s . 2 𝑆 = dom 𝑀
2 dmmeasal.m . . . . 5 (𝜑𝑀 ∈ Meas)
3 ismea 45465 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
42, 3sylib 217 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
54simplld 764 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
65simprd 494 . 2 (𝜑 → dom 𝑀 ∈ SAlg)
71, 6eqeltrid 2835 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  c0 4321  𝒫 cpw 4601   cuni 4907  Disj wdisj 5112   class class class wbr 5147  dom cdm 5675  cres 5677  wf 6538  cfv 6542  (class class class)co 7411  ωcom 7857  cdom 8939  0cc0 11112  +∞cpnf 11249  [,]cicc 13331  SAlgcsalg 45322  Σ^csumge0 45376  Meascmea 45463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-mea 45464
This theorem is referenced by:  meadjuni  45471  meassle  45477  meaunle  45478  meaiunlelem  45482  meadif  45493  meaiuninclem  45494  meaiuninc3v  45498  meaiininclem  45500  dmovnsal  45626  hoimbllem  45644  ctvonmbl  45703  vonct  45707
  Copyright terms: Public domain W3C validator