Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmeasal Structured version   Visualization version   GIF version

Theorem dmmeasal 46453
Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
dmmeasal.m (𝜑𝑀 ∈ Meas)
dmmeasal.s 𝑆 = dom 𝑀
Assertion
Ref Expression
dmmeasal (𝜑𝑆 ∈ SAlg)

Proof of Theorem dmmeasal
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmmeasal.s . 2 𝑆 = dom 𝑀
2 dmmeasal.m . . . . 5 (𝜑𝑀 ∈ Meas)
3 ismea 46452 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
42, 3sylib 218 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
54simplld 767 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
65simprd 495 . 2 (𝜑 → dom 𝑀 ∈ SAlg)
71, 6eqeltrid 2832 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4286  𝒫 cpw 4553   cuni 4861  Disj wdisj 5062   class class class wbr 5095  dom cdm 5623  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  ωcom 7806  cdom 8877  0cc0 11028  +∞cpnf 11165  [,]cicc 13270  SAlgcsalg 46309  Σ^csumge0 46363  Meascmea 46450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-mea 46451
This theorem is referenced by:  meadjuni  46458  meassle  46464  meaunle  46465  meaiunlelem  46469  meadif  46480  meaiuninclem  46481  meaiuninc3v  46485  meaiininclem  46487  dmovnsal  46613  hoimbllem  46631  ctvonmbl  46690  vonct  46694
  Copyright terms: Public domain W3C validator