![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmeasal | Structured version Visualization version GIF version |
Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
dmmeasal.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
dmmeasal.s | ⊢ 𝑆 = dom 𝑀 |
Ref | Expression |
---|---|
dmmeasal | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmeasal.s | . 2 ⊢ 𝑆 = dom 𝑀 | |
2 | dmmeasal.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
3 | ismea 45167 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
5 | 4 | simplld 767 | . . 3 ⊢ (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)) |
6 | 5 | simprd 497 | . 2 ⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
7 | 1, 6 | eqeltrid 2838 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∅c0 4323 𝒫 cpw 4603 ∪ cuni 4909 Disj wdisj 5114 class class class wbr 5149 dom cdm 5677 ↾ cres 5679 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 ωcom 7855 ≼ cdom 8937 0cc0 11110 +∞cpnf 11245 [,]cicc 13327 SAlgcsalg 45024 Σ^csumge0 45078 Meascmea 45165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-mea 45166 |
This theorem is referenced by: meadjuni 45173 meassle 45179 meaunle 45180 meaiunlelem 45184 meadif 45195 meaiuninclem 45196 meaiuninc3v 45200 meaiininclem 45202 dmovnsal 45328 hoimbllem 45346 ctvonmbl 45405 vonct 45409 |
Copyright terms: Public domain | W3C validator |