| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmeasal | Structured version Visualization version GIF version | ||
| Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| dmmeasal.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| dmmeasal.s | ⊢ 𝑆 = dom 𝑀 |
| Ref | Expression |
|---|---|
| dmmeasal | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmeasal.s | . 2 ⊢ 𝑆 = dom 𝑀 | |
| 2 | dmmeasal.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 3 | ismea 46489 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
| 5 | 4 | simplld 767 | . . 3 ⊢ (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)) |
| 6 | 5 | simprd 495 | . 2 ⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
| 7 | 1, 6 | eqeltrid 2835 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4278 𝒫 cpw 4545 ∪ cuni 4854 Disj wdisj 5053 class class class wbr 5086 dom cdm 5611 ↾ cres 5613 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ωcom 7791 ≼ cdom 8862 0cc0 11001 +∞cpnf 11138 [,]cicc 13243 SAlgcsalg 46346 Σ^csumge0 46400 Meascmea 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-mea 46488 |
| This theorem is referenced by: meadjuni 46495 meassle 46501 meaunle 46502 meaiunlelem 46506 meadif 46517 meaiuninclem 46518 meaiuninc3v 46522 meaiininclem 46524 dmovnsal 46650 hoimbllem 46668 ctvonmbl 46727 vonct 46731 |
| Copyright terms: Public domain | W3C validator |