Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmeasal Structured version   Visualization version   GIF version

Theorem dmmeasal 44026
Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
dmmeasal.m (𝜑𝑀 ∈ Meas)
dmmeasal.s 𝑆 = dom 𝑀
Assertion
Ref Expression
dmmeasal (𝜑𝑆 ∈ SAlg)

Proof of Theorem dmmeasal
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmmeasal.s . 2 𝑆 = dom 𝑀
2 dmmeasal.m . . . . 5 (𝜑𝑀 ∈ Meas)
3 ismea 44025 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
42, 3sylib 217 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
54simplld 764 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
65simprd 495 . 2 (𝜑 → dom 𝑀 ∈ SAlg)
71, 6eqeltrid 2838 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  wral 3059  c0 4259  𝒫 cpw 4536   cuni 4841  Disj wdisj 5042   class class class wbr 5077  dom cdm 5591  cres 5593  wf 6443  cfv 6447  (class class class)co 7295  ωcom 7732  cdom 8751  0cc0 10899  +∞cpnf 11034  [,]cicc 13110  SAlgcsalg 43884  Σ^csumge0 43936  Meascmea 44023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-mea 44024
This theorem is referenced by:  meadjuni  44031  meassle  44037  meaunle  44038  meaiunlelem  44042  meadif  44053  meaiuninclem  44054  meaiuninc3v  44058  meaiininclem  44060  dmovnsal  44186  hoimbllem  44204  ctvonmbl  44263  vonct  44267
  Copyright terms: Public domain W3C validator