| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmeasal | Structured version Visualization version GIF version | ||
| Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| dmmeasal.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| dmmeasal.s | ⊢ 𝑆 = dom 𝑀 |
| Ref | Expression |
|---|---|
| dmmeasal | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmeasal.s | . 2 ⊢ 𝑆 = dom 𝑀 | |
| 2 | dmmeasal.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 3 | ismea 46422 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) |
| 5 | 4 | simplld 767 | . . 3 ⊢ (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)) |
| 6 | 5 | simprd 495 | . 2 ⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
| 7 | 1, 6 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4292 𝒫 cpw 4559 ∪ cuni 4867 Disj wdisj 5069 class class class wbr 5102 dom cdm 5631 ↾ cres 5633 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ωcom 7822 ≼ cdom 8893 0cc0 11044 +∞cpnf 11181 [,]cicc 13285 SAlgcsalg 46279 Σ^csumge0 46333 Meascmea 46420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-mea 46421 |
| This theorem is referenced by: meadjuni 46428 meassle 46434 meaunle 46435 meaiunlelem 46439 meadif 46450 meaiuninclem 46451 meaiuninc3v 46455 meaiininclem 46457 dmovnsal 46583 hoimbllem 46601 ctvonmbl 46660 vonct 46664 |
| Copyright terms: Public domain | W3C validator |