![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3pthond | Structured version Visualization version GIF version |
Description: A path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
3trld.n | ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) |
Ref | Expression |
---|---|
3pthond | ⊢ (𝜑 → 𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
2 | 3wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
3 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
4 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
5 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
6 | 3wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 3wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 3trld.n | . . 3 ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 3trlond 30102 | . 2 ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | 3pthd 30103 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
11 | 3 | simplld 766 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
12 | 3 | simprrd 772 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
13 | s3cli 14884 | . . . . . 6 ⊢ 〈“𝐽𝐾𝐿”〉 ∈ Word V | |
14 | 2, 13 | eqeltri 2822 | . . . . 5 ⊢ 𝐹 ∈ Word V |
15 | s4cli 14885 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | |
16 | 1, 15 | eqeltri 2822 | . . . . 5 ⊢ 𝑃 ∈ Word V |
17 | 14, 16 | pm3.2i 469 | . . . 4 ⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) |
19 | 6 | ispthson 29675 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
20 | 11, 12, 18, 19 | syl21anc 836 | . 2 ⊢ (𝜑 → (𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
21 | 9, 10, 20 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 Vcvv 3464 ⊆ wss 3948 {cpr 4627 class class class wbr 5145 ‘cfv 6545 (class class class)co 7415 Word cword 14516 〈“cs3 14845 〈“cs4 14846 Vtxcvtx 28928 iEdgciedg 28929 TrailsOnctrlson 29624 Pathscpths 29645 PathsOncpthson 29647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8848 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-card 9974 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-n0 12518 df-z 12604 df-uz 12868 df-fz 13532 df-fzo 13675 df-hash 14342 df-word 14517 df-lsw 14565 df-concat 14573 df-s1 14598 df-s2 14851 df-s3 14852 df-s4 14853 df-wlks 29532 df-wlkson 29533 df-trls 29625 df-trlson 29626 df-pths 29649 df-pthson 29651 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |