| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3pthond | Structured version Visualization version GIF version | ||
| Description: A path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| Ref | Expression |
|---|---|
| 3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| 3trld.n | ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) |
| Ref | Expression |
|---|---|
| 3pthond | ⊢ (𝜑 → 𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
| 2 | 3wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
| 3 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
| 4 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
| 5 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
| 6 | 3wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 3wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | 3trld.n | . . 3 ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 3trlond 30143 | . 2 ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8 | 3pthd 30144 | . 2 ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) |
| 11 | 3 | simplld 767 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 12 | 3 | simprrd 773 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 13 | s3cli 14780 | . . . . . 6 ⊢ 〈“𝐽𝐾𝐿”〉 ∈ Word V | |
| 14 | 2, 13 | eqeltri 2825 | . . . . 5 ⊢ 𝐹 ∈ Word V |
| 15 | s4cli 14781 | . . . . . 6 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | |
| 16 | 1, 15 | eqeltri 2825 | . . . . 5 ⊢ 𝑃 ∈ Word V |
| 17 | 14, 16 | pm3.2i 470 | . . . 4 ⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) |
| 19 | 6 | ispthson 29713 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
| 20 | 11, 12, 18, 19 | syl21anc 837 | . 2 ⊢ (𝜑 → (𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐷)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
| 21 | 9, 10, 20 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹(𝐴(PathsOn‘𝐺)𝐷)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 Vcvv 3434 ⊆ wss 3900 {cpr 4576 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Word cword 14412 〈“cs3 14741 〈“cs4 14742 Vtxcvtx 28967 iEdgciedg 28968 TrailsOnctrlson 29661 Pathscpths 29681 PathsOncpthson 29683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-lsw 14462 df-concat 14470 df-s1 14496 df-s2 14747 df-s3 14748 df-s4 14749 df-wlks 29571 df-wlkson 29572 df-trls 29662 df-trlson 29663 df-pths 29685 df-pthson 29687 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |