MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhval Structured version   Visualization version   GIF version

Theorem sinhval 16202
Description: Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
sinhval (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))

Proof of Theorem sinhval
StepHypRef Expression
1 ixi 11919 . . . . . . . . 9 (i · i) = -1
21oveq1i 7458 . . . . . . . 8 ((i · i) · 𝐴) = (-1 · 𝐴)
3 ax-icn 11243 . . . . . . . . 9 i ∈ ℂ
4 mulass 11272 . . . . . . . . 9 ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
53, 3, 4mp3an12 1451 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴)))
6 mulm1 11731 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
72, 5, 63eqtr3a 2804 . . . . . . 7 (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴)
87fveq2d 6924 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴))
93, 3mulneg1i 11736 . . . . . . . . . 10 (-i · i) = -(i · i)
101negeqi 11529 . . . . . . . . . . 11 -(i · i) = --1
11 negneg1e1 12411 . . . . . . . . . . 11 --1 = 1
1210, 11eqtri 2768 . . . . . . . . . 10 -(i · i) = 1
139, 12eqtri 2768 . . . . . . . . 9 (-i · i) = 1
1413oveq1i 7458 . . . . . . . 8 ((-i · i) · 𝐴) = (1 · 𝐴)
15 negicn 11537 . . . . . . . . 9 -i ∈ ℂ
16 mulass 11272 . . . . . . . . 9 ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
1715, 3, 16mp3an12 1451 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
18 mullid 11289 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
1914, 17, 183eqtr3a 2804 . . . . . . 7 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2019fveq2d 6924 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴))
218, 20oveq12d 7466 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) − (exp‘𝐴)))
2221oveq1d 7463 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
23 mulcl 11268 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
243, 23mpan 689 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
25 sinval 16170 . . . . 5 ((i · 𝐴) ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
2624, 25syl 17 . . . 4 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
27 irec 14250 . . . . . . . 8 (1 / i) = -i
2827negeqi 11529 . . . . . . 7 -(1 / i) = --i
293negnegi 11606 . . . . . . 7 --i = i
3028, 29eqtri 2768 . . . . . 6 -(1 / i) = i
3130oveq1i 7458 . . . . 5 (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2))
32 ine0 11725 . . . . . . . 8 i ≠ 0
333, 32reccli 12024 . . . . . . 7 (1 / i) ∈ ℂ
34 efcl 16130 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
35 negcl 11536 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
36 efcl 16130 . . . . . . . . . 10 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3735, 36syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3834, 37subcld 11647 . . . . . . . 8 (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
3938halfcld 12538 . . . . . . 7 (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ)
40 mulneg12 11728 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ) → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
4133, 39, 40sylancr 586 . . . . . 6 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
42 2cnd 12371 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ∈ ℂ)
43 2ne0 12397 . . . . . . . . . . 11 2 ≠ 0
4443a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ≠ 0)
4538, 42, 44divnegd 12083 . . . . . . . . 9 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (-((exp‘𝐴) − (exp‘-𝐴)) / 2))
4634, 37negsubdi2d 11663 . . . . . . . . . 10 (𝐴 ∈ ℂ → -((exp‘𝐴) − (exp‘-𝐴)) = ((exp‘-𝐴) − (exp‘𝐴)))
4746oveq1d 7463 . . . . . . . . 9 (𝐴 ∈ ℂ → (-((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4845, 47eqtrd 2780 . . . . . . . 8 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4948oveq2d 7464 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5037, 34subcld 11647 . . . . . . . . 9 (𝐴 ∈ ℂ → ((exp‘-𝐴) − (exp‘𝐴)) ∈ ℂ)
5150halfcld 12538 . . . . . . . 8 (𝐴 ∈ ℂ → (((exp‘-𝐴) − (exp‘𝐴)) / 2) ∈ ℂ)
523a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
5332a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ≠ 0)
5451, 52, 53divrec2d 12074 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5550, 42, 52, 44, 53divdiv1d 12101 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5649, 54, 553eqtr2d 2786 . . . . . 6 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5741, 56eqtrd 2780 . . . . 5 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5831, 57eqtr3id 2794 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5922, 26, 583eqtr4d 2790 . . 3 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)))
6059oveq1d 7463 . 2 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i))
6139, 52, 53divcan3d 12075 . 2 (𝐴 ∈ ℂ → ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
6260, 61eqtrd 2780 1 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  ici 11186   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  expce 16109  sincsin 16111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117
This theorem is referenced by:  resinhcl  16204  tanhlt1  16208  sinhpcosh  48832
  Copyright terms: Public domain W3C validator