MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhval Structured version   Visualization version   GIF version

Theorem sinhval 16172
Description: Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
sinhval (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))

Proof of Theorem sinhval
StepHypRef Expression
1 ixi 11866 . . . . . . . . 9 (i · i) = -1
21oveq1i 7415 . . . . . . . 8 ((i · i) · 𝐴) = (-1 · 𝐴)
3 ax-icn 11188 . . . . . . . . 9 i ∈ ℂ
4 mulass 11217 . . . . . . . . 9 ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
53, 3, 4mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴)))
6 mulm1 11678 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
72, 5, 63eqtr3a 2794 . . . . . . 7 (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴)
87fveq2d 6880 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴))
93, 3mulneg1i 11683 . . . . . . . . . 10 (-i · i) = -(i · i)
101negeqi 11475 . . . . . . . . . . 11 -(i · i) = --1
11 negneg1e1 12358 . . . . . . . . . . 11 --1 = 1
1210, 11eqtri 2758 . . . . . . . . . 10 -(i · i) = 1
139, 12eqtri 2758 . . . . . . . . 9 (-i · i) = 1
1413oveq1i 7415 . . . . . . . 8 ((-i · i) · 𝐴) = (1 · 𝐴)
15 negicn 11483 . . . . . . . . 9 -i ∈ ℂ
16 mulass 11217 . . . . . . . . 9 ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
1715, 3, 16mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
18 mullid 11234 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
1914, 17, 183eqtr3a 2794 . . . . . . 7 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2019fveq2d 6880 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴))
218, 20oveq12d 7423 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) − (exp‘𝐴)))
2221oveq1d 7420 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
23 mulcl 11213 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
243, 23mpan 690 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
25 sinval 16140 . . . . 5 ((i · 𝐴) ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
2624, 25syl 17 . . . 4 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
27 irec 14219 . . . . . . . 8 (1 / i) = -i
2827negeqi 11475 . . . . . . 7 -(1 / i) = --i
293negnegi 11553 . . . . . . 7 --i = i
3028, 29eqtri 2758 . . . . . 6 -(1 / i) = i
3130oveq1i 7415 . . . . 5 (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2))
32 ine0 11672 . . . . . . . 8 i ≠ 0
333, 32reccli 11971 . . . . . . 7 (1 / i) ∈ ℂ
34 efcl 16098 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
35 negcl 11482 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
36 efcl 16098 . . . . . . . . . 10 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3735, 36syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3834, 37subcld 11594 . . . . . . . 8 (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
3938halfcld 12486 . . . . . . 7 (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ)
40 mulneg12 11675 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ) → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
4133, 39, 40sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
42 2cnd 12318 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ∈ ℂ)
43 2ne0 12344 . . . . . . . . . . 11 2 ≠ 0
4443a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ≠ 0)
4538, 42, 44divnegd 12030 . . . . . . . . 9 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (-((exp‘𝐴) − (exp‘-𝐴)) / 2))
4634, 37negsubdi2d 11610 . . . . . . . . . 10 (𝐴 ∈ ℂ → -((exp‘𝐴) − (exp‘-𝐴)) = ((exp‘-𝐴) − (exp‘𝐴)))
4746oveq1d 7420 . . . . . . . . 9 (𝐴 ∈ ℂ → (-((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4845, 47eqtrd 2770 . . . . . . . 8 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4948oveq2d 7421 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5037, 34subcld 11594 . . . . . . . . 9 (𝐴 ∈ ℂ → ((exp‘-𝐴) − (exp‘𝐴)) ∈ ℂ)
5150halfcld 12486 . . . . . . . 8 (𝐴 ∈ ℂ → (((exp‘-𝐴) − (exp‘𝐴)) / 2) ∈ ℂ)
523a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
5332a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ≠ 0)
5451, 52, 53divrec2d 12021 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5550, 42, 52, 44, 53divdiv1d 12048 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5649, 54, 553eqtr2d 2776 . . . . . 6 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5741, 56eqtrd 2770 . . . . 5 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5831, 57eqtr3id 2784 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5922, 26, 583eqtr4d 2780 . . 3 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)))
6059oveq1d 7420 . 2 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i))
6139, 52, 53divcan3d 12022 . 2 (𝐴 ∈ ℂ → ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
6260, 61eqtrd 2770 1 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130  ici 11131   · cmul 11134  cmin 11466  -cneg 11467   / cdiv 11894  2c2 12295  expce 16077  sincsin 16079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085
This theorem is referenced by:  resinhcl  16174  tanhlt1  16178  sinhpcosh  49604
  Copyright terms: Public domain W3C validator