MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhval Structured version   Visualization version   GIF version

Theorem sinhval 15863
Description: Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
sinhval (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))

Proof of Theorem sinhval
StepHypRef Expression
1 ixi 11604 . . . . . . . . 9 (i · i) = -1
21oveq1i 7285 . . . . . . . 8 ((i · i) · 𝐴) = (-1 · 𝐴)
3 ax-icn 10930 . . . . . . . . 9 i ∈ ℂ
4 mulass 10959 . . . . . . . . 9 ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
53, 3, 4mp3an12 1450 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴)))
6 mulm1 11416 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
72, 5, 63eqtr3a 2802 . . . . . . 7 (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴)
87fveq2d 6778 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴))
93, 3mulneg1i 11421 . . . . . . . . . 10 (-i · i) = -(i · i)
101negeqi 11214 . . . . . . . . . . 11 -(i · i) = --1
11 negneg1e1 12091 . . . . . . . . . . 11 --1 = 1
1210, 11eqtri 2766 . . . . . . . . . 10 -(i · i) = 1
139, 12eqtri 2766 . . . . . . . . 9 (-i · i) = 1
1413oveq1i 7285 . . . . . . . 8 ((-i · i) · 𝐴) = (1 · 𝐴)
15 negicn 11222 . . . . . . . . 9 -i ∈ ℂ
16 mulass 10959 . . . . . . . . 9 ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
1715, 3, 16mp3an12 1450 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
18 mulid2 10974 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
1914, 17, 183eqtr3a 2802 . . . . . . 7 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2019fveq2d 6778 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴))
218, 20oveq12d 7293 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) − (exp‘𝐴)))
2221oveq1d 7290 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
23 mulcl 10955 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
243, 23mpan 687 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
25 sinval 15831 . . . . 5 ((i · 𝐴) ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
2624, 25syl 17 . . . 4 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
27 irec 13918 . . . . . . . 8 (1 / i) = -i
2827negeqi 11214 . . . . . . 7 -(1 / i) = --i
293negnegi 11291 . . . . . . 7 --i = i
3028, 29eqtri 2766 . . . . . 6 -(1 / i) = i
3130oveq1i 7285 . . . . 5 (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2))
32 ine0 11410 . . . . . . . 8 i ≠ 0
333, 32reccli 11705 . . . . . . 7 (1 / i) ∈ ℂ
34 efcl 15792 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
35 negcl 11221 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
36 efcl 15792 . . . . . . . . . 10 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3735, 36syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3834, 37subcld 11332 . . . . . . . 8 (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
3938halfcld 12218 . . . . . . 7 (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ)
40 mulneg12 11413 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ) → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
4133, 39, 40sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
42 2cnd 12051 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ∈ ℂ)
43 2ne0 12077 . . . . . . . . . . 11 2 ≠ 0
4443a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ≠ 0)
4538, 42, 44divnegd 11764 . . . . . . . . 9 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (-((exp‘𝐴) − (exp‘-𝐴)) / 2))
4634, 37negsubdi2d 11348 . . . . . . . . . 10 (𝐴 ∈ ℂ → -((exp‘𝐴) − (exp‘-𝐴)) = ((exp‘-𝐴) − (exp‘𝐴)))
4746oveq1d 7290 . . . . . . . . 9 (𝐴 ∈ ℂ → (-((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4845, 47eqtrd 2778 . . . . . . . 8 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4948oveq2d 7291 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5037, 34subcld 11332 . . . . . . . . 9 (𝐴 ∈ ℂ → ((exp‘-𝐴) − (exp‘𝐴)) ∈ ℂ)
5150halfcld 12218 . . . . . . . 8 (𝐴 ∈ ℂ → (((exp‘-𝐴) − (exp‘𝐴)) / 2) ∈ ℂ)
523a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
5332a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ≠ 0)
5451, 52, 53divrec2d 11755 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5550, 42, 52, 44, 53divdiv1d 11782 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5649, 54, 553eqtr2d 2784 . . . . . 6 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5741, 56eqtrd 2778 . . . . 5 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5831, 57eqtr3id 2792 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5922, 26, 583eqtr4d 2788 . . 3 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)))
6059oveq1d 7290 . 2 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i))
6139, 52, 53divcan3d 11756 . 2 (𝐴 ∈ ℂ → ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
6260, 61eqtrd 2778 1 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872  ici 10873   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  expce 15771  sincsin 15773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779
This theorem is referenced by:  resinhcl  15865  tanhlt1  15869  sinhpcosh  46442
  Copyright terms: Public domain W3C validator