MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhval Structured version   Visualization version   GIF version

Theorem sinhval 16058
Description: Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
sinhval (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))

Proof of Theorem sinhval
StepHypRef Expression
1 ixi 11741 . . . . . . . . 9 (i · i) = -1
21oveq1i 7351 . . . . . . . 8 ((i · i) · 𝐴) = (-1 · 𝐴)
3 ax-icn 11060 . . . . . . . . 9 i ∈ ℂ
4 mulass 11089 . . . . . . . . 9 ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
53, 3, 4mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴)))
6 mulm1 11553 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
72, 5, 63eqtr3a 2790 . . . . . . 7 (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴)
87fveq2d 6821 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴))
93, 3mulneg1i 11558 . . . . . . . . . 10 (-i · i) = -(i · i)
101negeqi 11348 . . . . . . . . . . 11 -(i · i) = --1
11 negneg1e1 12109 . . . . . . . . . . 11 --1 = 1
1210, 11eqtri 2754 . . . . . . . . . 10 -(i · i) = 1
139, 12eqtri 2754 . . . . . . . . 9 (-i · i) = 1
1413oveq1i 7351 . . . . . . . 8 ((-i · i) · 𝐴) = (1 · 𝐴)
15 negicn 11356 . . . . . . . . 9 -i ∈ ℂ
16 mulass 11089 . . . . . . . . 9 ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
1715, 3, 16mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
18 mullid 11106 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
1914, 17, 183eqtr3a 2790 . . . . . . 7 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2019fveq2d 6821 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴))
218, 20oveq12d 7359 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) − (exp‘𝐴)))
2221oveq1d 7356 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
23 mulcl 11085 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
243, 23mpan 690 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
25 sinval 16026 . . . . 5 ((i · 𝐴) ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
2624, 25syl 17 . . . 4 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
27 irec 14103 . . . . . . . 8 (1 / i) = -i
2827negeqi 11348 . . . . . . 7 -(1 / i) = --i
293negnegi 11426 . . . . . . 7 --i = i
3028, 29eqtri 2754 . . . . . 6 -(1 / i) = i
3130oveq1i 7351 . . . . 5 (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2))
32 ine0 11547 . . . . . . . 8 i ≠ 0
333, 32reccli 11846 . . . . . . 7 (1 / i) ∈ ℂ
34 efcl 15984 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
35 negcl 11355 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
36 efcl 15984 . . . . . . . . . 10 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3735, 36syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3834, 37subcld 11467 . . . . . . . 8 (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
3938halfcld 12361 . . . . . . 7 (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ)
40 mulneg12 11550 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ) → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
4133, 39, 40sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
42 2cnd 12198 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ∈ ℂ)
43 2ne0 12224 . . . . . . . . . . 11 2 ≠ 0
4443a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ≠ 0)
4538, 42, 44divnegd 11905 . . . . . . . . 9 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (-((exp‘𝐴) − (exp‘-𝐴)) / 2))
4634, 37negsubdi2d 11483 . . . . . . . . . 10 (𝐴 ∈ ℂ → -((exp‘𝐴) − (exp‘-𝐴)) = ((exp‘-𝐴) − (exp‘𝐴)))
4746oveq1d 7356 . . . . . . . . 9 (𝐴 ∈ ℂ → (-((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4845, 47eqtrd 2766 . . . . . . . 8 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4948oveq2d 7357 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5037, 34subcld 11467 . . . . . . . . 9 (𝐴 ∈ ℂ → ((exp‘-𝐴) − (exp‘𝐴)) ∈ ℂ)
5150halfcld 12361 . . . . . . . 8 (𝐴 ∈ ℂ → (((exp‘-𝐴) − (exp‘𝐴)) / 2) ∈ ℂ)
523a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
5332a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ≠ 0)
5451, 52, 53divrec2d 11896 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5550, 42, 52, 44, 53divdiv1d 11923 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5649, 54, 553eqtr2d 2772 . . . . . 6 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5741, 56eqtrd 2766 . . . . 5 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5831, 57eqtr3id 2780 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5922, 26, 583eqtr4d 2776 . . 3 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)))
6059oveq1d 7356 . 2 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i))
6139, 52, 53divcan3d 11897 . 2 (𝐴 ∈ ℂ → ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
6260, 61eqtrd 2766 1 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002  ici 11003   · cmul 11006  cmin 11339  -cneg 11340   / cdiv 11769  2c2 12175  expce 15963  sincsin 15965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-fac 14176  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971
This theorem is referenced by:  resinhcl  16060  tanhlt1  16064  sinhpcosh  49772
  Copyright terms: Public domain W3C validator