MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhval Structured version   Visualization version   GIF version

Theorem sinhval 16122
Description: Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
sinhval (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))

Proof of Theorem sinhval
StepHypRef Expression
1 ixi 11807 . . . . . . . . 9 (i · i) = -1
21oveq1i 7397 . . . . . . . 8 ((i · i) · 𝐴) = (-1 · 𝐴)
3 ax-icn 11127 . . . . . . . . 9 i ∈ ℂ
4 mulass 11156 . . . . . . . . 9 ((i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
53, 3, 4mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · i) · 𝐴) = (i · (i · 𝐴)))
6 mulm1 11619 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
72, 5, 63eqtr3a 2788 . . . . . . 7 (𝐴 ∈ ℂ → (i · (i · 𝐴)) = -𝐴)
87fveq2d 6862 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · (i · 𝐴))) = (exp‘-𝐴))
93, 3mulneg1i 11624 . . . . . . . . . 10 (-i · i) = -(i · i)
101negeqi 11414 . . . . . . . . . . 11 -(i · i) = --1
11 negneg1e1 12175 . . . . . . . . . . 11 --1 = 1
1210, 11eqtri 2752 . . . . . . . . . 10 -(i · i) = 1
139, 12eqtri 2752 . . . . . . . . 9 (-i · i) = 1
1413oveq1i 7397 . . . . . . . 8 ((-i · i) · 𝐴) = (1 · 𝐴)
15 negicn 11422 . . . . . . . . 9 -i ∈ ℂ
16 mulass 11156 . . . . . . . . 9 ((-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
1715, 3, 16mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
18 mullid 11173 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
1914, 17, 183eqtr3a 2788 . . . . . . 7 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2019fveq2d 6862 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · (i · 𝐴))) = (exp‘𝐴))
218, 20oveq12d 7405 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) = ((exp‘-𝐴) − (exp‘𝐴)))
2221oveq1d 7402 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
23 mulcl 11152 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
243, 23mpan 690 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
25 sinval 16090 . . . . 5 ((i · 𝐴) ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
2624, 25syl 17 . . . 4 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (((exp‘(i · (i · 𝐴))) − (exp‘(-i · (i · 𝐴)))) / (2 · i)))
27 irec 14166 . . . . . . . 8 (1 / i) = -i
2827negeqi 11414 . . . . . . 7 -(1 / i) = --i
293negnegi 11492 . . . . . . 7 --i = i
3028, 29eqtri 2752 . . . . . 6 -(1 / i) = i
3130oveq1i 7397 . . . . 5 (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2))
32 ine0 11613 . . . . . . . 8 i ≠ 0
333, 32reccli 11912 . . . . . . 7 (1 / i) ∈ ℂ
34 efcl 16048 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
35 negcl 11421 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
36 efcl 16048 . . . . . . . . . 10 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3735, 36syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
3834, 37subcld 11533 . . . . . . . 8 (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
3938halfcld 12427 . . . . . . 7 (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ)
40 mulneg12 11616 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (((exp‘𝐴) − (exp‘-𝐴)) / 2) ∈ ℂ) → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
4133, 39, 40sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)))
42 2cnd 12264 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ∈ ℂ)
43 2ne0 12290 . . . . . . . . . . 11 2 ≠ 0
4443a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → 2 ≠ 0)
4538, 42, 44divnegd 11971 . . . . . . . . 9 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (-((exp‘𝐴) − (exp‘-𝐴)) / 2))
4634, 37negsubdi2d 11549 . . . . . . . . . 10 (𝐴 ∈ ℂ → -((exp‘𝐴) − (exp‘-𝐴)) = ((exp‘-𝐴) − (exp‘𝐴)))
4746oveq1d 7402 . . . . . . . . 9 (𝐴 ∈ ℂ → (-((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4845, 47eqtrd 2764 . . . . . . . 8 (𝐴 ∈ ℂ → -(((exp‘𝐴) − (exp‘-𝐴)) / 2) = (((exp‘-𝐴) − (exp‘𝐴)) / 2))
4948oveq2d 7403 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5037, 34subcld 11533 . . . . . . . . 9 (𝐴 ∈ ℂ → ((exp‘-𝐴) − (exp‘𝐴)) ∈ ℂ)
5150halfcld 12427 . . . . . . . 8 (𝐴 ∈ ℂ → (((exp‘-𝐴) − (exp‘𝐴)) / 2) ∈ ℂ)
523a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
5332a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ≠ 0)
5451, 52, 53divrec2d 11962 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = ((1 / i) · (((exp‘-𝐴) − (exp‘𝐴)) / 2)))
5550, 42, 52, 44, 53divdiv1d 11989 . . . . . . 7 (𝐴 ∈ ℂ → ((((exp‘-𝐴) − (exp‘𝐴)) / 2) / i) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5649, 54, 553eqtr2d 2770 . . . . . 6 (𝐴 ∈ ℂ → ((1 / i) · -(((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5741, 56eqtrd 2764 . . . . 5 (𝐴 ∈ ℂ → (-(1 / i) · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5831, 57eqtr3id 2778 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) = (((exp‘-𝐴) − (exp‘𝐴)) / (2 · i)))
5922, 26, 583eqtr4d 2774 . . 3 (𝐴 ∈ ℂ → (sin‘(i · 𝐴)) = (i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)))
6059oveq1d 7402 . 2 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i))
6139, 52, 53divcan3d 11963 . 2 (𝐴 ∈ ℂ → ((i · (((exp‘𝐴) − (exp‘-𝐴)) / 2)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
6260, 61eqtrd 2764 1 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  ici 11070   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  expce 16027  sincsin 16029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035
This theorem is referenced by:  resinhcl  16124  tanhlt1  16128  sinhpcosh  49729
  Copyright terms: Public domain W3C validator