Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smgrpmgm Structured version   Visualization version   GIF version

Theorem smgrpmgm 37817
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Hypothesis
Ref Expression
smgrpmgm.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
smgrpmgm (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem smgrpmgm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smgrpmgm.1 . . . 4 𝑋 = dom dom 𝐺
21issmgrpOLD 37816 . . 3 (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
3 simpl 482 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) → 𝐺:(𝑋 × 𝑋)⟶𝑋)
42, 3biimtrdi 253 . 2 (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋))
54pm2.43i 52 1 (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067   × cxp 5693  dom cdm 5695  wf 6564  (class class class)co 7443  SemiGrpcsem 37813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-fv 6576  df-ov 7446  df-ass 37796  df-mgmOLD 37802  df-sgrOLD 37814
This theorem is referenced by:  ismndo1  37826
  Copyright terms: Public domain W3C validator