Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smgrpmgm Structured version   Visualization version   GIF version

Theorem smgrpmgm 34289
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Hypothesis
Ref Expression
smgrpmgm.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
smgrpmgm (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem smgrpmgm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smgrpmgm.1 . . . 4 𝑋 = dom dom 𝐺
21issmgrpOLD 34288 . . 3 (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
3 simpl 476 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) → 𝐺:(𝑋 × 𝑋)⟶𝑋)
42, 3syl6bi 245 . 2 (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋))
54pm2.43i 52 1 (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090   × cxp 5353  dom cdm 5355  wf 6131  (class class class)co 6922  SemiGrpcsem 34285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-ass 34268  df-mgmOLD 34274  df-sgrOLD 34286
This theorem is referenced by:  ismndo1  34298
  Copyright terms: Public domain W3C validator