Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smgrpmgm Structured version   Visualization version   GIF version

Theorem smgrpmgm 37834
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Hypothesis
Ref Expression
smgrpmgm.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
smgrpmgm (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem smgrpmgm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smgrpmgm.1 . . . 4 𝑋 = dom dom 𝐺
21issmgrpOLD 37833 . . 3 (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
3 simpl 482 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) → 𝐺:(𝑋 × 𝑋)⟶𝑋)
42, 3biimtrdi 253 . 2 (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋))
54pm2.43i 52 1 (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051   × cxp 5652  dom cdm 5654  wf 6526  (class class class)co 7403  SemiGrpcsem 37830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-ass 37813  df-mgmOLD 37819  df-sgrOLD 37831
This theorem is referenced by:  ismndo1  37843
  Copyright terms: Public domain W3C validator