| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smgrpmgm | Structured version Visualization version GIF version | ||
| Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| smgrpmgm.1 | ⊢ 𝑋 = dom dom 𝐺 |
| Ref | Expression |
|---|---|
| smgrpmgm | ⊢ (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smgrpmgm.1 | . . . 4 ⊢ 𝑋 = dom dom 𝐺 | |
| 2 | 1 | issmgrpOLD 37833 | . . 3 ⊢ (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
| 3 | simpl 482 | . . 3 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) → 𝐺:(𝑋 × 𝑋)⟶𝑋) | |
| 4 | 2, 3 | biimtrdi 253 | . 2 ⊢ (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
| 5 | 4 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 × cxp 5652 dom cdm 5654 ⟶wf 6526 (class class class)co 7403 SemiGrpcsem 37830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-ass 37813 df-mgmOLD 37819 df-sgrOLD 37831 |
| This theorem is referenced by: ismndo1 37843 |
| Copyright terms: Public domain | W3C validator |