Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlflim Structured version   Visualization version   GIF version

Theorem snmlflim 32653
Description: If 𝐴 is simply normal, then the function 𝐹 of relative density of 𝐵 in the digit string converges to 1 / 𝑅, i.e. the set of occurrences of 𝐵 in the digit string has natural density 1 / 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
snml.s 𝑆 = (𝑟 ∈ (ℤ‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)})
snml.f 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
Assertion
Ref Expression
snmlflim ((𝐴 ∈ (𝑆𝑅) ∧ 𝐵 ∈ (0...(𝑅 − 1))) → 𝐹 ⇝ (1 / 𝑅))
Distinct variable groups:   𝑘,𝑏,𝑛,𝑥,𝐴   𝐵,𝑏,𝑘,𝑛   𝐹,𝑏   𝑟,𝑏,𝑅,𝑘,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑥,𝑟)   𝑆(𝑥,𝑘,𝑛,𝑟,𝑏)   𝐹(𝑥,𝑘,𝑛,𝑟)

Proof of Theorem snmlflim
StepHypRef Expression
1 snml.s . . . 4 𝑆 = (𝑟 ∈ (ℤ‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)})
21snmlval 32652 . . 3 (𝐴 ∈ (𝑆𝑅) ↔ (𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
32simp3bi 1144 . 2 (𝐴 ∈ (𝑆𝑅) → ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))
4 eqeq2 2834 . . . . . . . . 9 (𝑏 = 𝐵 → ((⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏 ↔ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵))
54rabbidv 3455 . . . . . . . 8 (𝑏 = 𝐵 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵})
65fveq2d 6656 . . . . . . 7 (𝑏 = 𝐵 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) = (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}))
76oveq1d 7155 . . . . . 6 (𝑏 = 𝐵 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
87mpteq2dv 5138 . . . . 5 (𝑏 = 𝐵 → (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)))
9 snml.f . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
108, 9eqtr4di 2875 . . . 4 (𝑏 = 𝐵 → (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) = 𝐹)
1110breq1d 5052 . . 3 (𝑏 = 𝐵 → ((𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ 𝐹 ⇝ (1 / 𝑅)))
1211rspccva 3597 . 2 ((∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ∧ 𝐵 ∈ (0...(𝑅 − 1))) → 𝐹 ⇝ (1 / 𝑅))
133, 12sylan 583 1 ((𝐴 ∈ (𝑆𝑅) ∧ 𝐵 ∈ (0...(𝑅 − 1))) → 𝐹 ⇝ (1 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  wral 3130  {crab 3134   class class class wbr 5042  cmpt 5122  cfv 6334  (class class class)co 7140  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  cuz 12231  ...cfz 12885  cfl 13155   mod cmo 13232  cexp 13425  chash 13686  cli 14832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fv 6342  df-ov 7143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator