Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem1 Structured version   Visualization version   GIF version

Theorem sxbrsigalem1 33938
Description: The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽
Allowed substitution hints:   𝑅(𝑣,𝑢)   𝐼(𝑛)   𝐽(𝑣,𝑢,𝑛)

Proof of Theorem sxbrsigalem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . 4 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 33937 . . 3 ran 𝑅 = (ℝ × ℝ)
5 retop 24698 . . . . 5 (topGen‘ran (,)) ∈ Top
61, 5eqeltri 2825 . . . 4 𝐽 ∈ Top
7 uniretop 24699 . . . . 5 ℝ = (topGen‘ran (,))
81unieqi 4924 . . . . 5 𝐽 = (topGen‘ran (,))
97, 8eqtr4i 2759 . . . 4 ℝ = 𝐽
106, 6, 9, 9txunii 23517 . . 3 (ℝ × ℝ) = (𝐽 ×t 𝐽)
114, 10eqtr2i 2757 . 2 (𝐽 ×t 𝐽) = ran 𝑅
121, 2, 3dya2iocuni 33936 . . . 4 (𝑥 ∈ (𝐽 ×t 𝐽) → ∃𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥)
13 simpr 483 . . . . . 6 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑦 = 𝑥)
141, 2, 3dya2iocct 33933 . . . . . . . . 9 ran 𝑅 ≼ ω
15 ctex 8990 . . . . . . . . 9 (ran 𝑅 ≼ ω → ran 𝑅 ∈ V)
1614, 15mp1i 13 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅 → ran 𝑅 ∈ V)
17 elpwi 4613 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅𝑦 ⊆ ran 𝑅)
18 ssct 9082 . . . . . . . . 9 ((𝑦 ⊆ ran 𝑅 ∧ ran 𝑅 ≼ ω) → 𝑦 ≼ ω)
1917, 14, 18sylancl 584 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅𝑦 ≼ ω)
20 elsigagen2 33800 . . . . . . . 8 ((ran 𝑅 ∈ V ∧ 𝑦 ⊆ ran 𝑅𝑦 ≼ ω) → 𝑦 ∈ (sigaGen‘ran 𝑅))
2116, 17, 19, 20syl3anc 1368 . . . . . . 7 (𝑦 ∈ 𝒫 ran 𝑅 𝑦 ∈ (sigaGen‘ran 𝑅))
2221adantr 479 . . . . . 6 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑦 ∈ (sigaGen‘ran 𝑅))
2313, 22eqeltrrd 2830 . . . . 5 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑥 ∈ (sigaGen‘ran 𝑅))
2423rexlimiva 3144 . . . 4 (∃𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥𝑥 ∈ (sigaGen‘ran 𝑅))
2512, 24syl 17 . . 3 (𝑥 ∈ (𝐽 ×t 𝐽) → 𝑥 ∈ (sigaGen‘ran 𝑅))
2625ssriv 3986 . 2 (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅)
2714, 15ax-mp 5 . 2 ran 𝑅 ∈ V
28 sigagenss2 33802 . 2 (( (𝐽 ×t 𝐽) = ran 𝑅 ∧ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) ∧ ran 𝑅 ∈ V) → (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅))
2911, 26, 27, 28mp3an 1457 1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098  wrex 3067  Vcvv 3473  wss 3949  𝒫 cpw 4606   cuni 4912   class class class wbr 5152   × cxp 5680  ran crn 5683  cfv 6553  (class class class)co 7426  cmpo 7428  ωcom 7876  cdom 8968  cr 11145  1c1 11147   + caddc 11149   / cdiv 11909  2c2 12305  cz 12596  (,)cioo 13364  [,)cico 13366  cexp 14066  topGenctg 17426  Topctop 22815   ×t ctx 23484  sigaGencsigagen 33790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-ac2 10494  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-omul 8498  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-acn 9973  df-ac 10147  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-sin 16053  df-cos 16054  df-pi 16056  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-refld 21544  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-cmp 23311  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-fcls 23865  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24818  df-cfil 25203  df-cmet 25205  df-cms 25283  df-limc 25815  df-dv 25816  df-log 26510  df-cxp 26511  df-logb 26717  df-siga 33761  df-sigagen 33791
This theorem is referenced by:  sxbrsigalem4  33940
  Copyright terms: Public domain W3C validator