| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem1 | Structured version Visualization version GIF version | ||
| Description: The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| sxbrsigalem1 | ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | dya2ioc.2 | . . . 4 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 4 | 1, 2, 3 | dya2iocucvr 34268 | . . 3 ⊢ ∪ ran 𝑅 = (ℝ × ℝ) |
| 5 | retop 24682 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
| 6 | 1, 5 | eqeltri 2824 | . . . 4 ⊢ 𝐽 ∈ Top |
| 7 | uniretop 24683 | . . . . 5 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 8 | 1 | unieqi 4879 | . . . . 5 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
| 9 | 7, 8 | eqtr4i 2755 | . . . 4 ⊢ ℝ = ∪ 𝐽 |
| 10 | 6, 6, 9, 9 | txunii 23513 | . . 3 ⊢ (ℝ × ℝ) = ∪ (𝐽 ×t 𝐽) |
| 11 | 4, 10 | eqtr2i 2753 | . 2 ⊢ ∪ (𝐽 ×t 𝐽) = ∪ ran 𝑅 |
| 12 | 1, 2, 3 | dya2iocuni 34267 | . . . 4 ⊢ (𝑥 ∈ (𝐽 ×t 𝐽) → ∃𝑦 ∈ 𝒫 ran 𝑅∪ 𝑦 = 𝑥) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → ∪ 𝑦 = 𝑥) | |
| 14 | 1, 2, 3 | dya2iocct 34264 | . . . . . . . . 9 ⊢ ran 𝑅 ≼ ω |
| 15 | ctex 8912 | . . . . . . . . 9 ⊢ (ran 𝑅 ≼ ω → ran 𝑅 ∈ V) | |
| 16 | 14, 15 | mp1i 13 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → ran 𝑅 ∈ V) |
| 17 | elpwi 4566 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → 𝑦 ⊆ ran 𝑅) | |
| 18 | ssct 8999 | . . . . . . . . 9 ⊢ ((𝑦 ⊆ ran 𝑅 ∧ ran 𝑅 ≼ ω) → 𝑦 ≼ ω) | |
| 19 | 17, 14, 18 | sylancl 586 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → 𝑦 ≼ ω) |
| 20 | elsigagen2 34131 | . . . . . . . 8 ⊢ ((ran 𝑅 ∈ V ∧ 𝑦 ⊆ ran 𝑅 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) | |
| 21 | 16, 17, 19, 20 | syl3anc 1373 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) |
| 23 | 13, 22 | eqeltrrd 2829 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 24 | 23 | rexlimiva 3126 | . . . 4 ⊢ (∃𝑦 ∈ 𝒫 ran 𝑅∪ 𝑦 = 𝑥 → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 25 | 12, 24 | syl 17 | . . 3 ⊢ (𝑥 ∈ (𝐽 ×t 𝐽) → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 26 | 25 | ssriv 3947 | . 2 ⊢ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) |
| 27 | 14, 15 | ax-mp 5 | . 2 ⊢ ran 𝑅 ∈ V |
| 28 | sigagenss2 34133 | . 2 ⊢ ((∪ (𝐽 ×t 𝐽) = ∪ ran 𝑅 ∧ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) ∧ ran 𝑅 ∈ V) → (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)) | |
| 29 | 11, 26, 27, 28 | mp3an 1463 | 1 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 class class class wbr 5102 × cxp 5629 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ωcom 7822 ≼ cdom 8893 ℝcr 11043 1c1 11045 + caddc 11047 / cdiv 11811 2c2 12217 ℤcz 12505 (,)cioo 13282 [,)cico 13284 ↑cexp 14002 topGenctg 17376 Topctop 22813 ×t ctx 23480 sigaGencsigagen 34121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-refld 21547 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-cmp 23307 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-fcls 23861 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-cfil 25188 df-cmet 25190 df-cms 25268 df-limc 25800 df-dv 25801 df-log 26498 df-cxp 26499 df-logb 26708 df-siga 34092 df-sigagen 34122 |
| This theorem is referenced by: sxbrsigalem4 34271 |
| Copyright terms: Public domain | W3C validator |