Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem1 Structured version   Visualization version   GIF version

Theorem sxbrsigalem1 31653
Description: The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽
Allowed substitution hints:   𝑅(𝑣,𝑢)   𝐼(𝑛)   𝐽(𝑣,𝑢,𝑛)

Proof of Theorem sxbrsigalem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . 4 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 31652 . . 3 ran 𝑅 = (ℝ × ℝ)
5 retop 23367 . . . . 5 (topGen‘ran (,)) ∈ Top
61, 5eqeltri 2886 . . . 4 𝐽 ∈ Top
7 uniretop 23368 . . . . 5 ℝ = (topGen‘ran (,))
81unieqi 4813 . . . . 5 𝐽 = (topGen‘ran (,))
97, 8eqtr4i 2824 . . . 4 ℝ = 𝐽
106, 6, 9, 9txunii 22198 . . 3 (ℝ × ℝ) = (𝐽 ×t 𝐽)
114, 10eqtr2i 2822 . 2 (𝐽 ×t 𝐽) = ran 𝑅
121, 2, 3dya2iocuni 31651 . . . 4 (𝑥 ∈ (𝐽 ×t 𝐽) → ∃𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥)
13 simpr 488 . . . . . 6 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑦 = 𝑥)
141, 2, 3dya2iocct 31648 . . . . . . . . 9 ran 𝑅 ≼ ω
15 ctex 8507 . . . . . . . . 9 (ran 𝑅 ≼ ω → ran 𝑅 ∈ V)
1614, 15mp1i 13 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅 → ran 𝑅 ∈ V)
17 elpwi 4506 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅𝑦 ⊆ ran 𝑅)
18 ssct 8581 . . . . . . . . 9 ((𝑦 ⊆ ran 𝑅 ∧ ran 𝑅 ≼ ω) → 𝑦 ≼ ω)
1917, 14, 18sylancl 589 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅𝑦 ≼ ω)
20 elsigagen2 31517 . . . . . . . 8 ((ran 𝑅 ∈ V ∧ 𝑦 ⊆ ran 𝑅𝑦 ≼ ω) → 𝑦 ∈ (sigaGen‘ran 𝑅))
2116, 17, 19, 20syl3anc 1368 . . . . . . 7 (𝑦 ∈ 𝒫 ran 𝑅 𝑦 ∈ (sigaGen‘ran 𝑅))
2221adantr 484 . . . . . 6 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑦 ∈ (sigaGen‘ran 𝑅))
2313, 22eqeltrrd 2891 . . . . 5 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑥 ∈ (sigaGen‘ran 𝑅))
2423rexlimiva 3240 . . . 4 (∃𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥𝑥 ∈ (sigaGen‘ran 𝑅))
2512, 24syl 17 . . 3 (𝑥 ∈ (𝐽 ×t 𝐽) → 𝑥 ∈ (sigaGen‘ran 𝑅))
2625ssriv 3919 . 2 (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅)
2714, 15ax-mp 5 . 2 ran 𝑅 ∈ V
28 sigagenss2 31519 . 2 (( (𝐽 ×t 𝐽) = ran 𝑅 ∧ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) ∧ ran 𝑅 ∈ V) → (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅))
2911, 26, 27, 28mp3an 1458 1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  wss 3881  𝒫 cpw 4497   cuni 4800   class class class wbr 5030   × cxp 5517  ran crn 5520  cfv 6324  (class class class)co 7135  cmpo 7137  ωcom 7560  cdom 8490  cr 10525  1c1 10527   + caddc 10529   / cdiv 11286  2c2 11680  cz 11969  (,)cioo 12726  [,)cico 12728  cexp 13425  topGenctg 16703  Topctop 21498   ×t ctx 22165  sigaGencsigagen 31507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-refld 20294  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-fcls 22546  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-cfil 23859  df-cmet 23861  df-cms 23939  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149  df-logb 25351  df-siga 31478  df-sigagen 31508
This theorem is referenced by:  sxbrsigalem4  31655
  Copyright terms: Public domain W3C validator