Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem1 Structured version   Visualization version   GIF version

Theorem sxbrsigalem1 34267
Description: The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽
Allowed substitution hints:   𝑅(𝑣,𝑢)   𝐼(𝑛)   𝐽(𝑣,𝑢,𝑛)

Proof of Theorem sxbrsigalem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . 4 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 34266 . . 3 ran 𝑅 = (ℝ × ℝ)
5 retop 24798 . . . . 5 (topGen‘ran (,)) ∈ Top
61, 5eqeltri 2835 . . . 4 𝐽 ∈ Top
7 uniretop 24799 . . . . 5 ℝ = (topGen‘ran (,))
81unieqi 4924 . . . . 5 𝐽 = (topGen‘ran (,))
97, 8eqtr4i 2766 . . . 4 ℝ = 𝐽
106, 6, 9, 9txunii 23617 . . 3 (ℝ × ℝ) = (𝐽 ×t 𝐽)
114, 10eqtr2i 2764 . 2 (𝐽 ×t 𝐽) = ran 𝑅
121, 2, 3dya2iocuni 34265 . . . 4 (𝑥 ∈ (𝐽 ×t 𝐽) → ∃𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥)
13 simpr 484 . . . . . 6 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑦 = 𝑥)
141, 2, 3dya2iocct 34262 . . . . . . . . 9 ran 𝑅 ≼ ω
15 ctex 9003 . . . . . . . . 9 (ran 𝑅 ≼ ω → ran 𝑅 ∈ V)
1614, 15mp1i 13 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅 → ran 𝑅 ∈ V)
17 elpwi 4612 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅𝑦 ⊆ ran 𝑅)
18 ssct 9090 . . . . . . . . 9 ((𝑦 ⊆ ran 𝑅 ∧ ran 𝑅 ≼ ω) → 𝑦 ≼ ω)
1917, 14, 18sylancl 586 . . . . . . . 8 (𝑦 ∈ 𝒫 ran 𝑅𝑦 ≼ ω)
20 elsigagen2 34129 . . . . . . . 8 ((ran 𝑅 ∈ V ∧ 𝑦 ⊆ ran 𝑅𝑦 ≼ ω) → 𝑦 ∈ (sigaGen‘ran 𝑅))
2116, 17, 19, 20syl3anc 1370 . . . . . . 7 (𝑦 ∈ 𝒫 ran 𝑅 𝑦 ∈ (sigaGen‘ran 𝑅))
2221adantr 480 . . . . . 6 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑦 ∈ (sigaGen‘ran 𝑅))
2313, 22eqeltrrd 2840 . . . . 5 ((𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥) → 𝑥 ∈ (sigaGen‘ran 𝑅))
2423rexlimiva 3145 . . . 4 (∃𝑦 ∈ 𝒫 ran 𝑅 𝑦 = 𝑥𝑥 ∈ (sigaGen‘ran 𝑅))
2512, 24syl 17 . . 3 (𝑥 ∈ (𝐽 ×t 𝐽) → 𝑥 ∈ (sigaGen‘ran 𝑅))
2625ssriv 3999 . 2 (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅)
2714, 15ax-mp 5 . 2 ran 𝑅 ∈ V
28 sigagenss2 34131 . 2 (( (𝐽 ×t 𝐽) = ran 𝑅 ∧ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) ∧ ran 𝑅 ∈ V) → (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅))
2911, 26, 27, 28mp3an 1460 1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  wss 3963  𝒫 cpw 4605   cuni 4912   class class class wbr 5148   × cxp 5687  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433  ωcom 7887  cdom 8982  cr 11152  1c1 11154   + caddc 11156   / cdiv 11918  2c2 12319  cz 12611  (,)cioo 13384  [,)cico 13386  cexp 14099  topGenctg 17484  Topctop 22915   ×t ctx 23584  sigaGencsigagen 34119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-refld 21641  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-fcls 23965  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-cfil 25303  df-cmet 25305  df-cms 25383  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614  df-logb 26823  df-siga 34090  df-sigagen 34120
This theorem is referenced by:  sxbrsigalem4  34269
  Copyright terms: Public domain W3C validator