| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem1 | Structured version Visualization version GIF version | ||
| Description: The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| sxbrsigalem1 | ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | dya2ioc.2 | . . . 4 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 4 | 1, 2, 3 | dya2iocucvr 34261 | . . 3 ⊢ ∪ ran 𝑅 = (ℝ × ℝ) |
| 5 | retop 24719 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
| 6 | 1, 5 | eqeltri 2829 | . . . 4 ⊢ 𝐽 ∈ Top |
| 7 | uniretop 24720 | . . . . 5 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 8 | 1 | unieqi 4899 | . . . . 5 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
| 9 | 7, 8 | eqtr4i 2760 | . . . 4 ⊢ ℝ = ∪ 𝐽 |
| 10 | 6, 6, 9, 9 | txunii 23548 | . . 3 ⊢ (ℝ × ℝ) = ∪ (𝐽 ×t 𝐽) |
| 11 | 4, 10 | eqtr2i 2758 | . 2 ⊢ ∪ (𝐽 ×t 𝐽) = ∪ ran 𝑅 |
| 12 | 1, 2, 3 | dya2iocuni 34260 | . . . 4 ⊢ (𝑥 ∈ (𝐽 ×t 𝐽) → ∃𝑦 ∈ 𝒫 ran 𝑅∪ 𝑦 = 𝑥) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → ∪ 𝑦 = 𝑥) | |
| 14 | 1, 2, 3 | dya2iocct 34257 | . . . . . . . . 9 ⊢ ran 𝑅 ≼ ω |
| 15 | ctex 8986 | . . . . . . . . 9 ⊢ (ran 𝑅 ≼ ω → ran 𝑅 ∈ V) | |
| 16 | 14, 15 | mp1i 13 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → ran 𝑅 ∈ V) |
| 17 | elpwi 4587 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → 𝑦 ⊆ ran 𝑅) | |
| 18 | ssct 9073 | . . . . . . . . 9 ⊢ ((𝑦 ⊆ ran 𝑅 ∧ ran 𝑅 ≼ ω) → 𝑦 ≼ ω) | |
| 19 | 17, 14, 18 | sylancl 586 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → 𝑦 ≼ ω) |
| 20 | elsigagen2 34124 | . . . . . . . 8 ⊢ ((ran 𝑅 ∈ V ∧ 𝑦 ⊆ ran 𝑅 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) | |
| 21 | 16, 17, 19, 20 | syl3anc 1372 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) |
| 23 | 13, 22 | eqeltrrd 2834 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 24 | 23 | rexlimiva 3134 | . . . 4 ⊢ (∃𝑦 ∈ 𝒫 ran 𝑅∪ 𝑦 = 𝑥 → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 25 | 12, 24 | syl 17 | . . 3 ⊢ (𝑥 ∈ (𝐽 ×t 𝐽) → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 26 | 25 | ssriv 3967 | . 2 ⊢ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) |
| 27 | 14, 15 | ax-mp 5 | . 2 ⊢ ran 𝑅 ∈ V |
| 28 | sigagenss2 34126 | . 2 ⊢ ((∪ (𝐽 ×t 𝐽) = ∪ ran 𝑅 ∧ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) ∧ ran 𝑅 ∈ V) → (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)) | |
| 29 | 11, 26, 27, 28 | mp3an 1462 | 1 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 Vcvv 3463 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4887 class class class wbr 5123 × cxp 5663 ran crn 5666 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ωcom 7869 ≼ cdom 8965 ℝcr 11136 1c1 11138 + caddc 11140 / cdiv 11902 2c2 12303 ℤcz 12596 (,)cioo 13369 [,)cico 13371 ↑cexp 14084 topGenctg 17454 Topctop 22848 ×t ctx 23515 sigaGencsigagen 34114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-ac2 10485 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-acn 9964 df-ac 10138 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14296 df-bc 14325 df-hash 14353 df-shft 15089 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-sum 15706 df-ef 16086 df-sin 16088 df-cos 16089 df-pi 16091 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-pt 17461 df-prds 17464 df-xrs 17519 df-qtop 17524 df-imas 17525 df-xps 17527 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19769 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-fbas 21324 df-fg 21325 df-cnfld 21328 df-refld 21578 df-top 22849 df-topon 22866 df-topsp 22888 df-bases 22901 df-cld 22974 df-ntr 22975 df-cls 22976 df-nei 23053 df-lp 23091 df-perf 23092 df-cn 23182 df-cnp 23183 df-haus 23270 df-cmp 23342 df-tx 23517 df-hmeo 23710 df-fil 23801 df-fm 23893 df-flim 23894 df-flf 23895 df-fcls 23896 df-xms 24276 df-ms 24277 df-tms 24278 df-cncf 24841 df-cfil 25226 df-cmet 25228 df-cms 25306 df-limc 25838 df-dv 25839 df-log 26535 df-cxp 26536 df-logb 26745 df-siga 34085 df-sigagen 34115 |
| This theorem is referenced by: sxbrsigalem4 34264 |
| Copyright terms: Public domain | W3C validator |