| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem1 | Structured version Visualization version GIF version | ||
| Description: The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| sxbrsigalem1 | ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | dya2ioc.2 | . . . 4 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 4 | 1, 2, 3 | dya2iocucvr 34297 | . . 3 ⊢ ∪ ran 𝑅 = (ℝ × ℝ) |
| 5 | retop 24676 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
| 6 | 1, 5 | eqeltri 2827 | . . . 4 ⊢ 𝐽 ∈ Top |
| 7 | uniretop 24677 | . . . . 5 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 8 | 1 | unieqi 4868 | . . . . 5 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
| 9 | 7, 8 | eqtr4i 2757 | . . . 4 ⊢ ℝ = ∪ 𝐽 |
| 10 | 6, 6, 9, 9 | txunii 23508 | . . 3 ⊢ (ℝ × ℝ) = ∪ (𝐽 ×t 𝐽) |
| 11 | 4, 10 | eqtr2i 2755 | . 2 ⊢ ∪ (𝐽 ×t 𝐽) = ∪ ran 𝑅 |
| 12 | 1, 2, 3 | dya2iocuni 34296 | . . . 4 ⊢ (𝑥 ∈ (𝐽 ×t 𝐽) → ∃𝑦 ∈ 𝒫 ran 𝑅∪ 𝑦 = 𝑥) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → ∪ 𝑦 = 𝑥) | |
| 14 | 1, 2, 3 | dya2iocct 34293 | . . . . . . . . 9 ⊢ ran 𝑅 ≼ ω |
| 15 | ctex 8886 | . . . . . . . . 9 ⊢ (ran 𝑅 ≼ ω → ran 𝑅 ∈ V) | |
| 16 | 14, 15 | mp1i 13 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → ran 𝑅 ∈ V) |
| 17 | elpwi 4554 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → 𝑦 ⊆ ran 𝑅) | |
| 18 | ssct 8971 | . . . . . . . . 9 ⊢ ((𝑦 ⊆ ran 𝑅 ∧ ran 𝑅 ≼ ω) → 𝑦 ≼ ω) | |
| 19 | 17, 14, 18 | sylancl 586 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → 𝑦 ≼ ω) |
| 20 | elsigagen2 34161 | . . . . . . . 8 ⊢ ((ran 𝑅 ∈ V ∧ 𝑦 ⊆ ran 𝑅 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) | |
| 21 | 16, 17, 19, 20 | syl3anc 1373 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 ran 𝑅 → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → ∪ 𝑦 ∈ (sigaGen‘ran 𝑅)) |
| 23 | 13, 22 | eqeltrrd 2832 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑦 = 𝑥) → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 24 | 23 | rexlimiva 3125 | . . . 4 ⊢ (∃𝑦 ∈ 𝒫 ran 𝑅∪ 𝑦 = 𝑥 → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 25 | 12, 24 | syl 17 | . . 3 ⊢ (𝑥 ∈ (𝐽 ×t 𝐽) → 𝑥 ∈ (sigaGen‘ran 𝑅)) |
| 26 | 25 | ssriv 3933 | . 2 ⊢ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) |
| 27 | 14, 15 | ax-mp 5 | . 2 ⊢ ran 𝑅 ∈ V |
| 28 | sigagenss2 34163 | . 2 ⊢ ((∪ (𝐽 ×t 𝐽) = ∪ ran 𝑅 ∧ (𝐽 ×t 𝐽) ⊆ (sigaGen‘ran 𝑅) ∧ ran 𝑅 ∈ V) → (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)) | |
| 29 | 11, 26, 27, 28 | mp3an 1463 | 1 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 class class class wbr 5089 × cxp 5612 ran crn 5615 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 ≼ cdom 8867 ℝcr 11005 1c1 11007 + caddc 11009 / cdiv 11774 2c2 12180 ℤcz 12468 (,)cioo 13245 [,)cico 13247 ↑cexp 13968 topGenctg 17341 Topctop 22808 ×t ctx 23475 sigaGencsigagen 34151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-refld 21542 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-fcls 23856 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-cfil 25182 df-cmet 25184 df-cms 25262 df-limc 25794 df-dv 25795 df-log 26492 df-cxp 26493 df-logb 26702 df-siga 34122 df-sigagen 34152 |
| This theorem is referenced by: sxbrsigalem4 34300 |
| Copyright terms: Public domain | W3C validator |